我要概念,不要习题(如:除了1和本身两个因数这个数叫质数,质数只有2个因数.)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:25:54
我要概念,不要习题(如:除了1和本身两个因数这个数叫质数,质数只有2个因数.)
我要概念,不要习题(如:除了1和本身两个因数这个数叫质数,质数只有2个因数.)
我要概念,不要习题(如:除了1和本身两个因数这个数叫质数,质数只有2个因数.)
小学总复习概念公式要点
1.像…-3 ,-2,-1,0,1,2,3,…这样的数称为整数.在整数中大于0的数称为正整数,小于0的数称为负整数.正整数、0、负整数统称为整数.
2.读法:从高位到低位,一级一级地读,每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零.
3.写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0.
4.我们在数物体的时候,用来表示物体个数的0,1,2,3……叫做自然数. 一个物体也没有,用0表示.0也是自然数.0是最小的自然数,没有最大的自然数,自然数的个数是无限的.
5.任何非0自然数都是由若干个“1”组成,所以自然数的基本单位是“1”.
6.计数单位
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位.
每相邻两个计数单位之间的进率都是10.这样的计数法叫做十进制计数法.
7.数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位.
8. 大小比较
①比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大.
②比较小数的大小:先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……
③比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大.分数的分母和分子都不相同的,先通分,再比较两个数的大小.
9.数的改写
一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数.有时还可以根据需要,省略这个数某一位后面的数,写成近似数.
准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数.改写后的数是原数的准确数.例如把 1254300000 改写成以万做单位的数是 125430 万;改写成以亿做单位的数 12.543 亿.
近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示.例如: 1302490015 省略亿后面的尾数是 13 亿.
四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1.
10.整除
①整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a .
②如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数).倍数和约数是相互依存的. 因为35能被7整除,所以35是7的倍数,7是35的约数.
③一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身.例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10.
④一个数的倍数的个数是无限的,其中最小的倍数是它本身.3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数.
⑤一个数的最大公因数和最小公倍数都是它本身.
11.最大公因数.
①几个数公有的约数,叫做这几个数的公约数.其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18.其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数.
②公约数只有1的两个数,叫做互质数,成互质关系的两个数.
有下列几种情况:
1和任何自然数互质.
相邻的两个自然数互质.
两个不同的质数互质.
当合数不是质数的倍数时,这个合数和这个质数互质.
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质.
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数.
如果两个数是互质数,它们的最大公约数就是1.
12.公倍数
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数
如2的倍数有2、4、6 、8、10、12、14、16、18 ……
3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们最小公倍数.
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数.
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数.
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的.
13. 2,3,5倍数的特征
①个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除.
②个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除.
③一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除.
④一个数各位数上的和能被9整除,这个数就能被9整除.
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除.
⑤一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除.例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除.
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除.例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除.
14.数的奇偶性
能被2整除的数叫做偶数. 不能被2整除的数叫做奇数.
0也是偶数.自然数按能否被2 整除的特征可分为奇数和偶数.
15.质数和合数
① 一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),
100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97.
②一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数.
③1不是质数也不是合数,自然数除了1外,不是质数就是合数.如果把自然数按其约数的个数的不同分类,可分为质数、合数和1.
每个合数都可以写成几个质数相乘的形式.其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数.
④把一个合数用质因数相乘的形式表示出来,叫做分解质因数.
例如把28分解质因数28=2×2×7
16.0既不是正数也不是负数;负数大小比较:数字越大的负数反而越小.
17.小数的意义
①把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示.一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
②一个小数由整数部分、小数部分和小数点部分组成.数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分.
在小数里,每相邻两个计数单位之间的进率都是10.小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10.
③小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字.
④小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字
18.小数的分类
纯小数:整数部分是零的小数,叫做纯小数.例如: 0.25 、 0.368 都是纯小数.
带小数:整数部分不是零的小数,叫做带小数.例如: 3.25 、 5.26 都是带小数.
有限小数:小数部分的数位是有限的小数,叫做有限小数.例如: 41.7 、 25.3 、 0.23 都是有限小数.
无限小数:小数部分的数位是无限的小数,叫做无限小数.例如: 4.33 …… 3.1415926……
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数.例如:∏
循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数.例如: 3.555 …… 0.0333 …… 12.109109 ……
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节.例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” .
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数.例如: 3.111 …… 0.5656 ……
混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数. 3.1222 …… 0.03333 ……
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点.如果循环节只有一个数字,就只在它的上面点一个点.例如: 3.777 …… 简写作 0.5302302 …… 简写作 .
19.分数的意义
①把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数.
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份.
②把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位.
③分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读.
④分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写.
20.除法与分数、比的关系:
分子相当于除法中的被除数、相当于比的前项;分母相当于除法中除数、相当于比的后项;分数线相当于除号、相当于比号;除数,分母相当于除数,分数线相当于除号,也就是被除数÷除数=被除数:除数=( ).
除法中除数不能为0,所以分数的分母也不能为0;除法是一种运算,分数是一个数.
21分数的分类
真分数:分子比分母小的分数叫做真分数.真分数小于1.
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数.假分数大于或等于1.
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数.
22. 约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分.
分子分母是互质数的分数,叫做最简分数.
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分.
23.百分数
表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比.百分数通常用"%"来表示.百分号是表示百分数的符号.
百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读.
百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示.
24. ①小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分.
② 分数化成小数:用分母去除分子.能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数.
一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数.
③小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号.
④百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.
⑤分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数.
⑥百分数化成分数:先把百分数改写成分数,能约分的要约成最简分数.
25.小数的基本性质:小数的末尾添上0或者去掉0,小数的大小不变.
分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外)分数的大小不变.
商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变,这叫做商不变的性质.
26.分数与百分数的区别:分数既可以表示一个数,也可以两个数的比;而百分数只表示一个数占另一个数的百分比,不能表示具体的数量,所以百分数不能有单位.
27.比
比的意义:两个数相除又叫作两个数的比.
根据比的意义可以求比值;求比值的方法:用前向除以后项.
比的基本性质:比的前项和后项都乘或除以相同的数(0除外)比值不变.应用比的基本性质可以化简比.
28.人民币
人民币的单位:元,角,分.
进率:相邻的两个单位间的进率是10,1元=10角,1角=10分.
29.24时计时法
为了计算简便,不容易出错,采用从0时到24时的计时法,通常叫做24时计时法.
30.时间单位:世纪、年、季度、月、日、时、分、秒.
进率:1世纪=100年;一年=365天(平年)或366天(闰年);一年=12个月;一年=4个季度;1季度=3个月;1日=24时;1时=60分;1分=60秒.
大月有:一月、三月、五月、七月、八月、十月、十二月,各月31天.
小月有:四月、六月、九月、十一月,各月30天.
二月:平年二月28天,闰年二月29天.
31.确定闰年的方法:公历纪年法中,是4的倍数的大多是闰年;公历年份是整百年的,必须是400的倍数才是闰年.如:1600年是闰年,1700年是平年.
32.常用质量单位有:克、千克、吨.
进率:相邻的两个质量单位间的进率是1000,即1吨=1000千克,1千克=1000克.
33.名数的改写:高级单位换算成低级单位就乘进率;低级单位换算成高级单位就除以进率.
(大化小乘以进率,小化大除以进率)
34.四则运算的意义
①整数、小数、分数加法的意义:把两个数合并成一个数的运算.
②整数、小数、分数减法的意义:已知两个数的和与其中一个加数,求另一个加数的运算.
③整数乘法的意义:求几个相同加数和的简便运算.
④小数乘法的意义:小数乘整数和整数乘法的意义相同;一个数乘小数,就是求这个数的十分之几、百分之几、……是多少.
⑤分数乘法的意义:分数乘整数和整数乘法的意义相同;一个数乘分数,就是求这个数的几分之几是多少.
⑥整数、小数、分数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算.
35.计算法则
①整数乘法的计算法则:(略).
②小数乘法的计算法则:先按整数乘法的计算法则算出积,再看两个因数中共有几位小数,就从积的右边起向左边数出几位,点上小数点.如果小数的位数不够,就要在前面用“0”补足.
③分数乘法的计算法则:分子相乘的积做分子,分母相乘的积做分母,(能约分的要先约分再计算)
④整数除法的计算法则:(略).
⑤小数除法的计算法则:除数是整数时,按整数除法的计算法则计算,商的小数点要和被除数的小数点对齐.除数是小数时,先移动除数的小数点,把除数变成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,(位数不够时末尾用“0”补足),然后按照除数是整数的小数除法法则进行计算.
⑥分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘以乙数的倒数.
36.四则运算的互逆关系
减法是加法的逆运算,除法是乘法的逆运算.
①加数+加数=和
和-一个加数=另一个加数
②被减数-减数=差
被减数-差=减数
差+减数=被减数
③因数×因数=积
积÷一个因数=另一个因数
④被除数÷除数=商
被除数÷商=除数
商×除数=被除数
除数×商+余数=被除数
37.估算的方法
①四舍五入法:要保留到哪一位,就看它的后一位,如果后一位上的数是4或者小于4,就把它舍去;如果后一位上的数是5或者大于5,也要把它舍去,但要同时向它的左边的单位进1,这种方法叫做四舍五入法.
②进一法:在取数的近似值时,把它舍去的部分去掉后,在保留部分的末尾上加1,这种取近似数的方法叫作进一法.
③去尾法: 在取数的近似值时,把它舍去的部分去掉后,所保留的数不变,这种取近似数的方法叫作去尾法.
38.四则混合运算
①在四则运算中,加法和减法称为第一级运算,乘法和除法称为第二级运算.
②在没有括号的算式里,如果只含有同一级运算,要从左往右一次计算;如果含有两级运算,要先做第二级运算,再做第一级运算.
③在有括号的算式里,要先算括号里面的,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的,最后算括号外面的.
39.分数、百分数应用题
单位“1”已知,用乘法.单位“1”未知,用法.
①求一个数是另一个数的几(百)分之几?
基本公式:前一个数÷后一个数 (比较量÷标准量)
②求一个数的几(百)分之几或几倍是多少?(单位“1”已知)
基本公式:单位“1”的量×分率=分率对应的量
③已知一个数的几(百)分之几是多少,求这个数.(单位“1”未知用除法或方程)
基本公式:分率对应的数量÷分率=单位“1”的量 或者列方程解.
④已知两个数,求一个数比另一个数多几分之几.
已知两个数,求一个数比另一个数多百分之几.
已知两个数,求一个数比另一个数少几分之几.
已知两个数,求一个数比另一个数少百分之几.
基本公式:两个数的差÷单位“1”的量(标准量)
40.存款
①本金:存入银行的钱叫本金.利息:取款时银行多支付的钱叫利息.利率:利息与本金的百分比叫做利率.
②利息计算公式:利息=本金×时间×利率
利息税=本金×时间×利率×5%
41.四则运算定律
加法交换律:a+b=b+a,
加法结合律:(a+b)+c=a+(b+c)
乘法交换律:ab=ba,
乘法结合律:(ab)c=a(bc)
乘法分配律:(a±b)c=ac±bc
42.运算性质
①减法的基本性质:a-(b+c)=a-b-c
a-b-c=a-(b+c)
②除法的基本性质:a÷b÷c=a÷(b×c)
(a±b)÷c=a÷c±b÷c
太多了,自己去看吧,网址:
http://blog.pptxx.com/article/429.htm
http://blog.pptxx.com/
你要知道1—6年级的慨念,可以到书店卖本小学毕业总复习的书,上面都归类说明得很清楚,还有一些巩固的练习题,你可以做做,加深印象。这样你就完全懂了。
自然数
用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……叫做自然数。
整数
自然数都是整数,整数不都是自然数。
小数
小数是特殊形式的分数。但是不能说小数就是分数。
混小数(带小数)
小数的整数部分不为零的小数叫混小数,也叫带小数。
纯小数
小数的整数部分为零的小数,叫做纯小数。
...
全部展开
自然数
用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……叫做自然数。
整数
自然数都是整数,整数不都是自然数。
小数
小数是特殊形式的分数。但是不能说小数就是分数。
混小数(带小数)
小数的整数部分不为零的小数叫混小数,也叫带小数。
纯小数
小数的整数部分为零的小数,叫做纯小数。
循环小数
小数部分一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:0.333……,1.2470470470……都是循环小数。
纯循环小数
循环节从十分位就开始的循环小数,叫做纯循环小数。例如: , 。
混循环小数
与纯循环小数有唯一的区别:不是从十分位开始循环的循环小数,叫混循环小数。例如, , 。
有限小数
小数的小数部分只有有限个数字的小数(不全为零)叫做有限小数。
无限小数
小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。
分数
表示把一个“单位1”平均分成若干份,取其中的一份或几份的数,叫做分数。(分成0份在此不讨论)
真分数
分子比分母小的分数叫真分数。
假分数
分子比分母大,或者分子等于分母的分数叫做假分数。(分母、分子为零在此不讨论)
带分数
一个整数(零除外)和一个真分数组合在一起的数,叫做带分数。带分数也是假分数的另一种表示形式,相互之间可以互化。
关于 (n表示自然数)是否是分数
数是由数字和数位组成。
0的意义
0既可以表示“没有”,也可以作为某些数量的界限。如温度等。0是一个完全有确定意义的数。
0是一个数。
0是一个偶数。
0是任何自然数(0除外)的倍数。
0有占位的作用。
0不能作除数。
0是中性数。
约数和倍数
当甲数能被乙数整除时,就说甲数是乙数的倍数,乙数是甲数的约数。这两个概念都是相对而存在。一个自然数,不存在是否倍数与约数。例如:“3是约数”,就是一个错误说法。只能是对3、6、9、……等数而言,是其中某个数的约数。
奇数与偶数
凡是能被2整除的数叫偶数,反之,不能被2整除的数叫奇数。
质数(素数)与合数
一个数的约数只有1和它本身的数叫做质数,也叫素数。反之,一个数的约数除了1和它本身以外,还有其他的约数,这个数就叫合数。
1是否质数
由于1的约数只有1个,所以1既不是质数,也不是合数。
公约数
几个数公有的约数,叫做公约数。
它的个数是有限的,既有最大的,也有最小的。
互质数
两个数的公约数只有1,而没有其他公约数的,这两个数就叫互质数。
质数与互质数
这两个概念没有什么联系。两个质数,不能肯定就是互质数。只有两个不相同的质数,才能肯定是互质数。另外,两个合数既可能是互质数,也可能不是互质数,但不能说两个合数一定不是互质数。
质因数
把一个合数分解成几个质数相乘的形式,这样的质数叫做质因数。
分解质因数
把一个合数分解成几个质数相同的形式,就叫做分解质因数。
公倍数
几个数公有的倍数,叫做公倍数。它的个数是无限的,只有最小的,没有最大的。
最大公约数
几个数公有的约数中,最大的一个就叫做这几个数的最大公约数。
最小公倍数
几个数公有的无限个倍数中,最小的一个,就叫做这几个数的最小公倍数。
能被2整除的判断方法
一个数能否被2整除,只要看这个数的末尾是否有0、2、4、6、8这五个数的其中一个即可。
能被5整除的判断方法
一个数能否被5整除,只要看这个数的末尾是否有0、5这两个数的其中一个即可。
能被3整除的判断方法
一个数能否被3整除,只要看这个数的各个数位上数字的和能否被3整除。
收起
一般运算规则
1 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工...
全部展开
一般运算规则
1 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6 加数+加数=和 和-一个加数=另一个加数
7 被减数-减数=差 被减数-差=减数 差+减数=被减数
8 因数×因数=积 积÷一个因数=另一个因数
9 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 正方形 C周长 S面积 a边长
周长=边长×4 C=4a
面积=边长×边长 S=a×a
2 正方体 V:体积 a:棱长
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3 长方形 C周长 S面积 a边长
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4 长方体 V:体积 s:面积 a:长 b: 宽 h:高
表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
体积=长×宽×高 V=abh
5 三角形 s面积 a底 h高
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6 平行四边形 s面积 a底 h高
面积=底×高 s=ah
7 梯形 s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8 圆形 S面积 C周长 ∏ d=直径 r=半径
周长=直径×∏=2×∏×半径 C=∏d=2∏r
面积=半径×半径×∏
9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长
侧面积=底面周长×高 表面积=侧面积+底面积×2
体积=底面积×高 体积=侧面积÷2×半径
10 圆锥体 v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
读懂理解会应用以下定义定理性质公式
一、算术方面
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子
叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,
等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数
(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。数量关系计算公式方面
1、单价×数量=总价 2、单产量×数量=总产量
3、速度×时间=路程 4、工效×时间=工作总量
5、加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
有余数的除法: 被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米。 1亩=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化发。
16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数: 公约数只有1的两个数,叫做互质数。
18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
21、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整除,即能用2进行
约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
如3. 141592654
33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
34、什么叫代数? 代数就是用字母代替数。
35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =(a+b
)*c
收起