设数列{an}满足a1+3a2+3^2×a3+……+3^(n-1)×an=n/3,a∈N (1)求数列{an}的通项(2)设bn=n/an,求数列{bn}的前n项和Sn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:49:00

设数列{an}满足a1+3a2+3^2×a3+……+3^(n-1)×an=n/3,a∈N (1)求数列{an}的通项(2)设bn=n/an,求数列{bn}的前n项和Sn
设数列{an}满足a1+3a2+3^2×a3+……+3^(n-1)×an=n/3,a∈N  (1)求数列{an}的通项(2)设bn=n/an,求数列{bn}的前n项和Sn

设数列{an}满足a1+3a2+3^2×a3+……+3^(n-1)×an=n/3,a∈N (1)求数列{an}的通项(2)设bn=n/an,求数列{bn}的前n项和Sn
由a1+3a2+3^2a3+……+3^(n-1)an=n/3
和a1+3a2+3^2a3+……+3^(n-1)an+3^na_(n+1)=(n+1)/3得
3^n*a_(n+1)=1/3
所以a_(n+1)=1/[3^(n+1)]
所以an=1/(3^n)=
所以bn=n*3^n
设它的前n项和为S
则S=3+2*3^2+…………n*3^n
3S=3^2+2*3^3+…………(n-1)*3^n+n*3^(n+1)
上两等式左右分别相减得
(1-3)S=3+3^2+3^3+…………3^n-3^(n+1)
=[3^(n+1)-3]/2+3^n-3^(n+1)
=3^n-[3^(n+1)+3]/2
所以S=[3^(n+1)+3]-2*3^n

设数列AN满足A1等于1,3(A1+a2+~+AN)=(n+2)an,求通向公式 设数列{an}满足a1+2a2+3a3+.+nan=n(n+1)(n+2)求通项an 设数列【an】满足a1=1,3(a1+a2+a3+······+an)=(n+2)an,求通项an 设数列{an}满足:a1+a2/2+a3/3+a4/4……+an/n=An+B,其中A、B为常数.数列{an}是否为等差数列? 问道数列题.设数列an满足a1+2a2+3a3+...+nan=2^n(n属于正自然数),则数列an的通项是? 设数列{an}满足a1+a2/2+a3/3+.+an/n=n^2-2n-2,求数列{an}的通项公式 设数列{an}满足;a1+a2/2+a3/3+...+an/n=n^2-2n-2,求数列{an}的通项公式(a1,a2,a3...an中a后面都是下标) 设数列{an}满足a1+2a2+3a3+······nan=n^2求数列{an}的通项公式 设数列{an}满足a1+3a2+3^2a3+...+3^n-1an=n/3,求(1)数列{an}的通项公式(2)设bn=n/an求数列bn的前n项 设数列{an}满足a1=1a2=2an=1/3(an-1+2an-2)求an题目为设数列{an}满足a1=1,a2=2,an=1/3(an-1+2an-2)求an 设数列{an}满足a1+3a2+3^2a3+...+3^(n-1)an=n/3求an的通项 数列{an}满足a1=3/2,an+1=an2-an+1,求证:1/an=1/(an)-1 - 1/(an+1)-1数列{an}满足a1=3/2,an+1=an2-an+1,求证:1/an=1/(an)-1 - 1/(an+1)-1设Sn=1/a1+1/a2+...+1/an,n>2证明1 数列{an}满足:1/a1+2/a2+3/a3+…+n/an=2n(1)求通项公式an(2)设Sn=a1+a2+…+an,求1/S1+2/S2+…+n/Sn 高二数列题:设数列{an}满足an+1=an^2-nan+1,n为正整数,当a1>=3时,证明……设数列{an}满足an+1=an^2-nan+1,n为正整数,当a1>=3时,证明(2)1/(1+a1) + 1/(1+a2) + ……+1/(1+an) =< 1/2 已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an求an 数列{an}满足a1=3/2,an+1=an2-an+1,求证:1/an=1/(an)-1 - 1/(an+1)-1 设Sn=1/a1+1/a2+...+1/an,n>2数列{an}满足a1=3/2,an+1=an2-an+1,求证:1/an=1/(an)-1 - 1/(an+1)-1设Sn=1/a1+1/a2+...+1/an,n>2证明1 已知等比数列{an}满足2a1+a3=3a2.且a3+2是a2.a4的等差中项.求数列已知等比数列{an}满足2a1+a3=3a2.且a3+2是a2.a4的等差中项. 求数列{an}的通项公式 设数列{an}的前n项和为sn,求S15 设数列{an}满足a1+2a2+3a3+……+nan=2^n(n∈N*) 求数列{an}的通项公式 设bn=n^2*an,求数列bn的前n项和