在正方形ABCD中P是BC边上的一点且BP=3PC,Q是CD的中点求证(1)三角形ADQ与三角形QCP相似(2)PQ垂直于AQ
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:59:25
在正方形ABCD中P是BC边上的一点且BP=3PC,Q是CD的中点求证(1)三角形ADQ与三角形QCP相似(2)PQ垂直于AQ
在正方形ABCD中P是BC边上的一点且BP=3PC,Q是CD的中点求证(1)三角形ADQ与三角形QCP相似(2)PQ垂直于AQ
在正方形ABCD中P是BC边上的一点且BP=3PC,Q是CD的中点求证(1)三角形ADQ与三角形QCP相似(2)PQ垂直于AQ
好,如你所愿:证明:由题意设正方形ABCD的边长为a则由P是BC上一点,所以:AD:QC=DQ:PC=AQ:PQ=2:1 则可知:△ADQ与△QCP是相似三角形 (
不妨设正方形ABCD的边长为 4 ,则有:AD = 4 ,DQ = 2 ,CP = 1 。
1)
在△ADQ和△QCP中,∠ADQ = 90°= ∠QCP ,AD/CQ = 2 = DQ/CP ,
所以,△ADQ ∽ △QCP 。
2)
因为,△ADQ ∽ △QCP ,可得:∠AQD = ∠QPC ,
所以,∠AQP = 180°-∠AQD-∠PQC...
全部展开
不妨设正方形ABCD的边长为 4 ,则有:AD = 4 ,DQ = 2 ,CP = 1 。
1)
在△ADQ和△QCP中,∠ADQ = 90°= ∠QCP ,AD/CQ = 2 = DQ/CP ,
所以,△ADQ ∽ △QCP 。
2)
因为,△ADQ ∽ △QCP ,可得:∠AQD = ∠QPC ,
所以,∠AQP = 180°-∠AQD-∠PQC = 180°-∠QPC-∠PQC = ∠PCQ = 90° ,
即有:AQ⊥PQ 。
收起
设PC=X
(1)PC/CQ=DQ/AD=1/2
角PCQ=角QDA=90度
边角边定理
(2)勾股定理算
PQ=√5X
AQ=2√5X
AP=5X
AP^2=AQ^2+PQ^2
所以垂直
(1)因为:BP=3PC,所以,PC=BC/4
又ABCD为正方形,所以AB=BC=CD=DA
所以 PC=DA/4=CD/4
又Q是CD中点,所以DQ=CQ=AB/2=BC/2=CD/2=DA/2
所以,PC=DQ/2
...
全部展开
(1)因为:BP=3PC,所以,PC=BC/4
又ABCD为正方形,所以AB=BC=CD=DA
所以 PC=DA/4=CD/4
又Q是CD中点,所以DQ=CQ=AB/2=BC/2=CD/2=DA/2
所以,PC=DQ/2
又角ADQ=角QCP=90度
所以,三角形ADQ与三角形QCP相似(SAS)
(2) 因为:三角形ADQ与三角形QCP相似
PC=DQ/2,CQ=AB/2=BC/2=CD/2=DA/2
所以PC与DQ为相似边
所以它们对应的对角相等,即角DAQ=角PQD
又ABCD为正方形,所以角ADQ为直角
所以角DAQ+角AQD=90
所以角PQC+角AQD=90
所以角AQP=180-角PQC-角AQD=90
即AQ与PQ垂直
收起