奥数不等式证明【x+[y+z^(1/4)]^(1/3)】^(1/2)≥(xyz)^(1/32)高手请进,xyz为正数,+ [y + z^(1/4)]^(1/3) 】^(1/2) ≥(xyz)^(1/32),题目不好打,挺挤得的,请见谅.希望能快点.快且对的加分,加满也可以.xyz是(正)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:45:54

奥数不等式证明【x+[y+z^(1/4)]^(1/3)】^(1/2)≥(xyz)^(1/32)高手请进,xyz为正数,+ [y + z^(1/4)]^(1/3) 】^(1/2) ≥(xyz)^(1/32),题目不好打,挺挤得的,请见谅.希望能快点.快且对的加分,加满也可以.xyz是(正)
奥数不等式证明【x+[y+z^(1/4)]^(1/3)】^(1/2)≥(xyz)^(1/32)高手请进,
xyz为正数,+ [y + z^(1/4)]^(1/3) 】^(1/2) ≥(xyz)^(1/32),题目不好打,挺挤得的,请见谅.希望能快点.快且对的加分,加满也可以.
xyz是(正)整数还是正数不太确定,如果做不出就默认是正整数吧。望指教,

奥数不等式证明【x+[y+z^(1/4)]^(1/3)】^(1/2)≥(xyz)^(1/32)高手请进,xyz为正数,+ [y + z^(1/4)]^(1/3) 】^(1/2) ≥(xyz)^(1/32),题目不好打,挺挤得的,请见谅.希望能快点.快且对的加分,加满也可以.xyz是(正)
a+b^(1/n) = a+n·[b^(1/n)]/n ≥(n+1)(ab/n^n)^(1/(n+1)),a,b为正数,n为正整数
n^n n+1>(n^n)^(1/(n+1)) => (n+1)/(n^n)^(1/(n+1)) > 1
所以a+b^(1/n) > (ab)^(1/(n+1))
故[x+[y+z^(1/4)]^(1/3)]^(1/2)
>[x+[(yz)^(1/5)]^(1/3)]^(1/2)
=[x+(yz)^(1/15)]^(1/2)
>[(xyz)^(1/16)]^(1/2)
=(xyz)^(1/32)
即[x+[y+z^(1/4)]^(1/3)]^(1/2) > (xyz)^(1/32)
证毕

我知

【不等式证明】若x+4y+9z=1 求证(9/x+4/y+1/z大于等于100) 用柯西不等式证明:设正数x,y,z,满足x+y+z=1,求证:1/x+4/y+9/z≥36 请教两道不等式证明题:1、若x,y,z属于R+,且x+y+z=xyz,证明不等式(y+z)/x+请教两道不等式证明题:1、若x,y,z属于R+,且x+y+z=xyz,证明不等式(y+z)/x+(z+x)/y+(x+y)/z大于等于2(1/x+1/y+1/z)^2.2、已知0小于等于a 高中数学柯西不等式证明题x.y.z是正数 x+y+z=1证明:x/(y+2z)+y/(z+2x)+z/(x+2y) ≥1 三角不等式证明证明sin(x+y)+sin(y+z)+sin(z+x)>sinx+siny+sinz+sin(x+y+z) 用柯西不等式证明:如果x,y,z为正数,x+y+z=1,则x^2+y^2+z^2>=1/3 【不等式证明】x,y,z是正数,求证 (x^2+y^2)+[(1/x)+(1/y)]^2大于等于(4√2) 不等式证明 急 已知x,y,z 是正数.若 x/(x+2) +y/(y+2) +z/(z+2) =1求证 x^2/(x+2) +y^2/(y+2) +z^2/(z+2) >=1 一道高中不等式证明题已知正数x,y,z满足x+y+z=1求证:x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)>=1/3 奥数不等式证明【x+[y+z^(1/4)]^(1/3)】^(1/2)≥(xyz)^(1/32)高手请进,xyz为正数,+ [y + z^(1/4)]^(1/3) 】^(1/2) ≥(xyz)^(1/32),题目不好打,挺挤得的,请见谅.希望能快点.快且对的加分,加满也可以.xyz是(正) 设x,y,z∈R+,xy+yz+xz=1,证明不等式:(xy)^2/z+(xz)^2/y+(yz)^2/x+6xyz≥x+y+zRt 一道高一不等式证明题已知x,y,z∈(0,1),证明1<xy+yz+xz ≤4/3 设x,y,z>0,x+y+z=3,证明(x+y)/(xy(4-xy))≥4/(4+x+y) (用不等式解)只能用这种方法吗 能不能用不等式证明 就是高中范围的不等式第三小题(x+y)/xy(4-xy)+(y+z)/yz(4-yz)+(z+x)/zx(4-zx)≥2新年好运 100分!求一道不等式数学题的解法x,y,z属于全体正实数已知 x+y+z=1证明:z/(x^2+1) + y/(y^2+1) +x/(z^2+1) 求解一道较难的不等式证明题目x,y,z∈[0,1] 求证(1+x)(1+Y)(1+Z)>=√8(x+y)(y+z)(x+z) 数学不等式证明.已知x+y+z=1,求证:x^2/[y+2z]+y^2/[z+2x]+z^2/[x+2y]不小于1/3.请说明过程,[]表示一般括号. 求证明 空间不等式欧几里德空间中 求证不等式||z||*||x-y|| (1)设x,y,z是正实数,且x²+y²+z²=9,证明不等式:2(x+y+z)-xyz ≤10;(2)设x,y,z是正实数,且(1/x)+(1/y)+(1/z)=1,求证:√(x+yz)+√(y+zx)+√(z+xy)≥√(xyz)+√x+√y+√z .