三角形的内角ABC的对边为abc,abc成等比数列,角B的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 17:30:11
三角形的内角ABC的对边为abc,abc成等比数列,角B的取值范围
三角形的内角ABC的对边为abc,abc成等比数列,角B的取值范围
三角形的内角ABC的对边为abc,abc成等比数列,角B的取值范围
三角形的内角ABC的对边为abc,abc成等比数列
ac=b^2
由余弦定理有:cosB=(a²+c²-b²)/(2ac)
cosB=(a²+c²-ac)/(2ac)
a²+c²>=2ac
cosB=(a²+c²-ac)/(2ac)>=(2ac-ac)/(2ac)=1/2
角B为三角形的内角
0°<角B<180°
0
0°<角B<=60°
a、b、c成等比数列,则b²=ac
cosB=(a²+c²-b²)/(2ac)
=(a²+c²-ac)/(2ac)
=(a²+c²)/(2ac) -1/2
由均值不等式得a²+c²≥2ac,因此(a²+c²)/(2ac)≥1
cosB≥1-...
全部展开
a、b、c成等比数列,则b²=ac
cosB=(a²+c²-b²)/(2ac)
=(a²+c²-ac)/(2ac)
=(a²+c²)/(2ac) -1/2
由均值不等式得a²+c²≥2ac,因此(a²+c²)/(2ac)≥1
cosB≥1-1/2=1/2
又B为三角形内角,-1
π/3≤B<π/2
收起
边长成等比数列,即 a/b=b/c,∴ b²=ac;
结合正弦定理可得:sin²B=sinAsinC=[cos(A-C)-cos(A+C)]/2=[cos(A-C)+cosB]/2;
整理得:cos(A-C)=2sin²B-cosB;
因 0
全部展开
边长成等比数列,即 a/b=b/c,∴ b²=ac;
结合正弦定理可得:sin²B=sinAsinC=[cos(A-C)-cos(A+C)]/2=[cos(A-C)+cosB]/2;
整理得:cos(A-C)=2sin²B-cosB;
因 0
2cos²B+cosB<3 恒成立(因三角形内角 0故角 B 的取值范围是 0
收起