已知向量A由(a1,a2,a3)线性表示且表达式唯一,证明a1,a2,a3线性无关

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:09:35

已知向量A由(a1,a2,a3)线性表示且表达式唯一,证明a1,a2,a3线性无关
已知向量A由(a1,a2,a3)线性表示且表达式唯一,证明a1,a2,a3线性无关

已知向量A由(a1,a2,a3)线性表示且表达式唯一,证明a1,a2,a3线性无关
用反证法
若a1,a2,a3线性相关,则存在不全为0的
k1,k2,k3使得
k1a1+k2a2+k3a3 = 0
别外 存在唯一的一组p1,p2,p3使得
p1a1+p2a2+p3a3 = A
两试相加有(k1+p1)a1+(k2+p2)a2+(k3+p3)a3=A
由于k1,k2,k3中至少有一个不为0,这说明
(k1+p1),(k2+p2),(k3+p3),中至少能找少一个与对应p1,p2,p3不等
于是找到了A关于a1,a2,a3的两个线性表示,与唯一性矛盾
证毕

已知向量A由(a1,a2,a3)线性表示且表达式唯一,证明a1,a2,a3线性无关 已知向量A由(a1,a2,a3)线性表示且表达式唯一,证明a1,a2,a3线性无关 有关线性代数向量组的线性相关的问题已知向量组a1,a2,a3,a4,A=(a1,a2,a3),B=(a2,a3,a4),R(A)=2,R(B)=3求证:(1)a1能由a2,a3线性表示(2)a4不能用a1,a2,a3线性表示 看看这道线性代数证明题已知向量组a1,a2,a3线性相关,向量组a1,a2,a3,a4线性无关,且a1可以由a2,a3线性表示,证明a4不可以由a1,a2,a3线性表示 线性相关性设向量组a1,a2,a3线性无关,向量B1可由a1,a2,a3线性表示,而向量B2不能由a1,a2,a3线性表示,则对于任意常数k,必有A.a1,a2,a3,kB+B2线性无关 B.a1,a2,a3,kB+B2线性相关C.a1,a2,a3,B1+kB线性无关 D.a1,a2,a3, 设向量组A:a1,a2,a3线性无关,向量b1能由向量组A线性表示,向量b2不能由向量组A线性表示,k为任意常数,问(1)向量组a1,a2,a3,kb1+b2是否线性相关,为什么?(2)向量组a1,a2,a3,b1+kb2是否线性相关,为什 已知向量组a1,a2,a3,a4线性无关,则向量组() A a1+a2,a2+a3,a3+a4,a4+a1线性无关b a1-a2,a2-a3,a3-a4,a4-a1线性无关c a1+a2,a2+a3,a3+a4,a4-a1线性无关da1+a2,a2+a3,a3-a4,a4-a1线性无关 线性代数问题.希望解释为什么.2.已知向量组a1,a2,a3,a4线性无关,则向量组( )A.a1+a2,a2+a3,a3+a4,a4+a5线性无关B.a1-a2,a2-a3,a3-a4,a4-a5 线性无关C.a1+a2,a2+a3,a3+a4,a4-a1 线性无关D.a1+a2.a2+a3,a3-a4,q4-a1 线性无 已知向量组a1,a2,a3,a4线性无关,则( ).(A)a1+a2,a2+a3,a3+a4,a4+a1线性无关(B)a1-a2,a2-a3,a3-a4,a4-a1线性无关(C)a1+a2,a2+a3,a3+a4,a4-a1线性无关(D)a1+a2,a2+a3,a3-a4,a4-a1线性无关 已知向量组a1 a2 a3 a4 是线性无关则(A)a1+a2,a2+a3,a3+a4,a4+a1线性无关(B)a1-a2,a2-a3,a3-a4,a4-a1线性无关(C)a1+a2,a2+a3,a3+a4,a4-a1线性无关(D)a1+a2,a2+a3,a3-a4,a4-a1线性无关 证明:若n维向量a1不等于0,a2不能由a1线性表示,a3不能由a1,a2线性表示,则a1,a2,a3线性无关. 证明:若n维向量a1!=0,a2不能由a1线性表示,a3不能由a1,a2线性表示,则a1,a2,a3线性无关 已知向量组a1,a2,a3,a4,A=(a1,a2,a3),B=(a2,a3,a4,R(A)=2,R(B)=3,证明a1能由a1a2线性表示 已知a4不能由a1,a2,a3线性表示,但a1能由a2,a3,a4线性表示,求证:a1能由a2,a3线性表示 线性相关问题已知a1,a2,a3,线性无关,a2,a3,a4线性相关,判断a4能否由a1,a2,a3线性表示?我自己的解答:由已知,因a1,a2,a3线性无关,所以a1,a2线性无关又a2,a3,a4线性相关,所以设a4=k2a2+k3a3;假设a4可以由a1,a 向量a1 a2线性无关,则向量a3不可由a1a2线性表示吗 求证线性相关证明题(两题)1、设向量组a1,a2,a3,a4线性相关,a2,a3,a4线性无关,并且a5可由向量组a1,a2,a3线性表示.证明:向量组的秩R(a1,a2,a3,a4,a5)=32、设向量组a1,a2,a3,a4线性无关,且是非其次线性 线性代数线性无关问题已知向量组a1,a2,a3,a4,线性无关,则以下线性无关的向量组是( )A.a1+a2,a2+a3,a3+a4,a4+a1B.a1-a2,a2-a3,a3-a4,a4-a1C.a1+a2,a2+a3,a3+a4,a4-a1D.a1+a2,a2+a3,a3-a4,a4-a1请问答案是什么?