椭圆x^2/4+y^2/3=1上一点A(1,3/2),E,F为椭圆上两动点,AE斜率与AF斜率互为相反数,证明EF斜率为定值,且求出定值为多少

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:20:48

椭圆x^2/4+y^2/3=1上一点A(1,3/2),E,F为椭圆上两动点,AE斜率与AF斜率互为相反数,证明EF斜率为定值,且求出定值为多少
椭圆x^2/4+y^2/3=1上一点A(1,3/2),E,F为椭圆上两动点,AE斜率与AF斜率互为相反数,
证明EF斜率为定值,且求出定值为多少

椭圆x^2/4+y^2/3=1上一点A(1,3/2),E,F为椭圆上两动点,AE斜率与AF斜率互为相反数,证明EF斜率为定值,且求出定值为多少
椭圆x^2/4+y^2/3=1上一点A(1,3/2),E,F为椭圆上两动点,AE斜率与AF斜率互为相反数,证明EF斜率为定值,且求出定值为多少
椭圆的顶点是(0,±√3)、(±2,0);
标出A(1,3/2),点A在椭圆上,并连接AE、AF
设AE的斜率为k(k≠0),则AF的斜率为-k.(若k=0,则E、F为同一点,不符合题意)
又AE、AF经过A(1,3/2)
∴直线AE的方程为:y-3/2 = k(x-1) ①
直线AF的方程 y-3/2 =-k(x-1) ②
又椭圆方程为 x^2/4+y^2/3 = 1 ,分别联立①、②并化简得:
(4k^2+3)x^2 +(-8k^2+12k)x +(4k^2-12k-3)= 0 ③
(4k^2+3)x^2 -(8k^2+12k)x +(4k^2+12k-3)= 0 ④
∴由③得:(x-1)*[(4k^2+3)x -(4k^2-12k-3)] = 0
∴x = 1 或 x=(4k^2-12k-3)/(4k^2+3)
(1)当x=1时,y=3/2,显然是点A(1,3/2)
(2)当x=(4k^2-12k-3)/(4k^2+3)时,y=(3/2)-(12k^2+6k)/(4k^2+3)
即:点E[(4k^2-12k-3)/(4k^2+3),(3/2)-(12k^2+6k)/(4k^2+3)]
∴由④得:(x-1)*[(4k^2+3)x-(4k^2+12k-3)] = 0
∴x = 1 或 x=(4k^2+12k-3)/(4k^2+3)
1)当x=1时,y=3/2,显然是点A(1,3/2)
2)当x=(4k^2+12k-3)/(4k^2+3)时,y=(3/2)-(12k^2-6k)/(4k^2+3)
即:点F[(4k^2+12k-3)/(4k^2+3),(3/2)-(12k^2-6k)/(4k^2+3)]
∴EF的斜率k = { [(3/2)-(12k^2-6k)/(4k^2+3))]-[(3/2)-(12k^2+6k)/(4k^2+3)]}/{[(4k^2+12k-3)/(4k^2+3)]-[(4k^2-12k-3)/(4k^2+3)]}
=[12k/(4k²+3)]/[24k/(4k²+3)]
又k≠0
∴EF的斜率k=1/2 ,即EF的斜率为定值1/2.

已知点A(0,1)是椭圆x^2+4y^2=4上的一点,P是椭圆上的动点则弦AP最大值 设A,B分别为椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右顶点,(1,2/3)为椭圆上一点椭圆长半轴长等于焦距 求椭圆的方程 已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点p(3,4),F1、F2为椭圆的两个焦点,且满足PF1⊥PF2,求椭圆方程. 点p(3,4)是椭圆x^2/a^2+y^2/b^2=1上的一点,f1,f2为椭圆的两焦点,若pf1垂直pf2.1)椭圆的方程2)pf1f2面 椭圆B与椭圆A有相同焦点,已知一点,求椭圆B方程椭圆A:x^2/9+y^2/4=1(2,3)在椭圆B上 设x^2/9+y^2/4=λ.求具体解法.上课打盹,是否有“离心率相同”一说,忘了! 已知点A(0,2)及椭圆x²/4+y²=1,在椭圆上求一点P使|PA|的值最大 已知点A(0,2)及椭圆x²/4+y²=1,在椭圆上求一点P使|PA|的值最大 已知椭圆x*2/a*2+y*2/b*2=1(a>b>0)上的一点P(x,y),求3x+4y的 取值范围x*2表示x的平方/表示除以 已知椭圆方程,求任意一点到这椭圆上最近距离如何求?已知椭圆方程x^2/a^2+y^2/b^2=1求任意一点到这椭圆上最近距离,如何求? 椭圆X^2/25+Y^2/9=1与X,Y正半轴交于A,B,C椭圆上一点,四边形OACB最大值 问椭圆方程X^2/9+Y^2/4=1上是否存在一点P到定点A(a,0)(其中5/3 A为椭圆x^2+4y^2=4上任意一点,B为圆x^2+(y-2)^2=1/3上任意一点,求|AB|的最大值和最小值. 已知椭圆x^2/9+y^2/5=1,F1,F2分别为椭圆的左右焦点点A(1,1)为椭圆内一点,点P为椭圆上一点,求|PA|+|PF1|的最大值 设P(x,y)是椭圆x²/25+y²/16=1上一点,则2x/5+3y/4的最小值是? 已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的一点p(x,y),求3x=4y的取值范围 已知点A(3,2),B(-4,0),点P是椭圆x^2/25+y^2/9=1上一点,则|PA|+|PB|的最大值 设A,B分别为椭圆x^2/a^2+y^2/b^2=1的左右顶点,设A,B分别为椭圆x^2/a^2+y^2/b^2=1的左右顶点(a>b>0),(1,3/2)为椭圆上一点,椭圆长半轴的长等于焦距(1)求椭圆的方程(2)设P(4,x)(x≠0),若直线AP,BP分别与 已知点M(2/3,1)为椭圆x^2/4+y^2/3= 1内一点,P为椭圆上一点,点F2为椭圆的右焦点求2*PF2+PM的最小值并求P坐标