椭圆x^2/4+y^2/3=1上一点A(1,3/2),E,F为椭圆上两动点,AE斜率与AF斜率互为相反数,证明EF斜率为定值,且求出定值为多少
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:20:48
椭圆x^2/4+y^2/3=1上一点A(1,3/2),E,F为椭圆上两动点,AE斜率与AF斜率互为相反数,证明EF斜率为定值,且求出定值为多少
椭圆x^2/4+y^2/3=1上一点A(1,3/2),E,F为椭圆上两动点,AE斜率与AF斜率互为相反数,
证明EF斜率为定值,且求出定值为多少
椭圆x^2/4+y^2/3=1上一点A(1,3/2),E,F为椭圆上两动点,AE斜率与AF斜率互为相反数,证明EF斜率为定值,且求出定值为多少
椭圆x^2/4+y^2/3=1上一点A(1,3/2),E,F为椭圆上两动点,AE斜率与AF斜率互为相反数,证明EF斜率为定值,且求出定值为多少
椭圆的顶点是(0,±√3)、(±2,0);
标出A(1,3/2),点A在椭圆上,并连接AE、AF
设AE的斜率为k(k≠0),则AF的斜率为-k.(若k=0,则E、F为同一点,不符合题意)
又AE、AF经过A(1,3/2)
∴直线AE的方程为:y-3/2 = k(x-1) ①
直线AF的方程 y-3/2 =-k(x-1) ②
又椭圆方程为 x^2/4+y^2/3 = 1 ,分别联立①、②并化简得:
(4k^2+3)x^2 +(-8k^2+12k)x +(4k^2-12k-3)= 0 ③
(4k^2+3)x^2 -(8k^2+12k)x +(4k^2+12k-3)= 0 ④
∴由③得:(x-1)*[(4k^2+3)x -(4k^2-12k-3)] = 0
∴x = 1 或 x=(4k^2-12k-3)/(4k^2+3)
(1)当x=1时,y=3/2,显然是点A(1,3/2)
(2)当x=(4k^2-12k-3)/(4k^2+3)时,y=(3/2)-(12k^2+6k)/(4k^2+3)
即:点E[(4k^2-12k-3)/(4k^2+3),(3/2)-(12k^2+6k)/(4k^2+3)]
∴由④得:(x-1)*[(4k^2+3)x-(4k^2+12k-3)] = 0
∴x = 1 或 x=(4k^2+12k-3)/(4k^2+3)
1)当x=1时,y=3/2,显然是点A(1,3/2)
2)当x=(4k^2+12k-3)/(4k^2+3)时,y=(3/2)-(12k^2-6k)/(4k^2+3)
即:点F[(4k^2+12k-3)/(4k^2+3),(3/2)-(12k^2-6k)/(4k^2+3)]
∴EF的斜率k = { [(3/2)-(12k^2-6k)/(4k^2+3))]-[(3/2)-(12k^2+6k)/(4k^2+3)]}/{[(4k^2+12k-3)/(4k^2+3)]-[(4k^2-12k-3)/(4k^2+3)]}
=[12k/(4k²+3)]/[24k/(4k²+3)]
又k≠0
∴EF的斜率k=1/2 ,即EF的斜率为定值1/2.