若f(x) 连续,∫[0,1]xf(t)dt=f(x)+xe^x,求f(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 11:17:41
若f(x) 连续,∫[0,1]xf(t)dt=f(x)+xe^x,求f(x)
若f(x) 连续,∫[0,1]xf(t)dt=f(x)+xe^x,求f(x)
若f(x) 连续,∫[0,1]xf(t)dt=f(x)+xe^x,求f(x)
∫(0->1)xf(t)dt=f(x)+xe^x
f(x) =-xe^x + ∫(0->1)xf(t)dt (1)
∫(0->1) f(x) dx = ∫(0->1) [-xe^x + ∫(0->1)xf(t)dt ] dx
=∫(0->1) (-xe^x) dx + [x^2/2](0->1) . ∫(0->1)f(t)dt
=∫(0->1) -x d(e^x) + (1/2)∫(0->1)f(t)dt
(1/2)∫(0->1) f(x) dx =[-xe^x](0->1) +∫(0->1) e^x dx
= -e + (e-1)
= -1
∫(0->1) f(x) dx = -2
from (1)
f(x) =-xe^x + ∫(0->1)xf(t)dt
=-xe^x -2x
若f(x) 连续,∫[0,1]xf(t)dt=f(x)+xe^x,求f(x)
设f(x)连续,若f(x)满足∫(0,1)xf(t)dt=f(x)+xe^x,求f(x).
设f(x)连续 则d∫(0,2x)xf(t)dt/dx=?
设当x>0时,函数f(x)连续且满足f(x)=x+∫(1,x)1/xf(t)dt,求f(x)
∫(0-2x)1/xf(t/2)dt f(x)=xf'(x),
∫[0,1]xf(t)dt=f(x)+xe^x求f(x)
一道数学题:设f(x)连续,满足f(x)=x+2∫0xf(t)dt(从0到x积分),求f(x).答案是1/2(e^2x-1),这是怎么做出来的,
设函数f(x)连续,则积分区间(0->x),d/dx{∫tf(x^2-t^2)dt} = ()A.2xf(x^2)设函数f(x)连续,则积分区间(0->x),d/dx{∫tf(x^2-t^2)dt} = ()A.2xf(x^2)B.-2xf(x^2)C.xf(x^2)D.-xf(x^2)
设f(x)满足∫[0,x]t^2f(tx)dt=xf(x)-1,求f(x)
证明:若函数f(x)在[0,1]上连续,则∫xf(sinx)dx=π/2∫f(sinx)dx (上限 π,下限 0)
若f”(x)连续,则∫xf”(x)dx=?
若f”(x)连续,则∫xf”(x)dx
若f”(x)连续,则∫xf”(x)dx=?
f(x)在[0,1]上连续,f'(1)=0,f(1)-f(0)=2,∫(0~1)xf(x)dx=?(定积分)
设f''(x)在[0,1]上连续,f'(1)=0,且f(1)-f(2)=2,则∫(0,1)xf''(x)dx=
设f''(x)在[0,1]连续,且f(0)=1,f(2)=3,f'(2)=5,求∫[0,1]xf''(2x)dx
已知f(x)具有二阶连续导数,且f(0)=1,f(2)=4,f'(2)=2 求∫xf''(2x)dx
设y=f(x)在(-∞,+∞)上连续且单调递减,试证:函数F(x)=∫ {0,x}(x-2t)f(t)dt 在(-∞,+∞)单调递F(x)=∫[0,x] (x-2t)f(t)dt=x∫[0,x] f(t)dt-2∫[0,x] tf(t)dtF'(x)=∫[0,x] f(t)dt+xf(x)-2xf(x)=∫[0,x] f(t)dt-xf(x)F''(x)=f(x