已知log(1/7)[log(3)(log(2)x)]=0已知log1/7[log3(log2x)]=0(1/7;3;2都为底数),x^(-1/2)=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 17:30:16
已知log(1/7)[log(3)(log(2)x)]=0已知log1/7[log3(log2x)]=0(1/7;3;2都为底数),x^(-1/2)=
已知log(1/7)[log(3)(log(2)x)]=0
已知log1/7[log3(log2x)]=0(1/7;3;2都为底数),x^(-1/2)=
已知log(1/7)[log(3)(log(2)x)]=0已知log1/7[log3(log2x)]=0(1/7;3;2都为底数),x^(-1/2)=
log1/7[log3(log2x)]=0=log1/7(1)
所以log3(log2x)=1
log3(log2x)=log3(3)
log2(x)=3
x=2³
x=8
先解方程,一层一层从外向里解
最外层log(1/7)[log(3)(log(2)x)]=0
可以得到log(3)(log(2)x)=(1/7)^0=1
然后进而得到log(2)x=3^1=3
最后有x=2^3=8
所以x^(-1/2)=8^(-1/2)=1/(2√2)=(√2)/4
log1/7[log3(log2x)]=0
则Iog1/7(1)=o
所以Iog3(Iog2x)=1(Iog2x=3 Iog3(3)=1
固x=8
x^(-1/2)=-2根号2
关于数学对数的换底公式推论的问题已知 log(2)(3) = a,log(3(7)=b,用a,b表示log(42)(56)因为log(2)(3)=a,则1/a=log(3)(2),又∵log(3)(7)=b,∴log(42)(56)=log(3)(56)/log(3)(42)=log(3)(7)+3·log(3)(2)/log(3)(7)+log(3)(2)+1=ab+3/ab+b+1
关于数学对数的换底公式推论的问题已知 log(2)(3) = a,log(3(7)=b,用a,b表示log(42)(56)因为log(2)(3)=a,则1/a=log(3)(2),又∵log(3)(7)=b,∴log(42)(56)=log(3)(56)/log(3)(42)=log(3)(7)+3·log(3)(2)/log(3)(7)+log(3)(2)+1=ab+3/ab+b+1
已知log(14)7=a log(14)5=b 用ab表示log(35)70=log(3)4*log(4)8*log(8)m=log(4)2 求m
log(2)根号18+1/2log(2)56-log(2)3根号7
已知log(2a+3)1/2
已知log(2a+3)1/2
计算:(1) log(2)(3)*log(3)(4)*log(4)(5)(2)log(2)(7)*log(√7)(8)
已知log∨7∧[log∨3∧(log∨2∧x)]=0 求X∧1/2的值
已知log(2)3=a,log(3)7=b,试用a,b表示log(14)56
已知log(2)3=a,log(3)7=b试用a,b表示log(2)14
Log(2)1/25•log(3)1/8•log(5)1/9化简 还有已知log(18)9=a,log(18)5=b求log(36)45 值
化简log(2)3 * log(3)4 * log(4)7 *log(7)16
已知lg2=0.301,lg3=0.477,求(1)log(2)1000,(2)log(5)0.5,(3)log(9)8,(4)log(1/2)1/3
已知a<b<1,log(a)b+log(b)a=10/3,求log(a)b-log(b)a的值括号为下标,
log
log
log
求等式log(2)3*log(3)4*log(4)5*log(5)6*log(6)7*log(7)m=log(3)9时m的值?