已知平行四边形OACB与ODEA,向量OA=向量a,向量=向量b,向量OD=向量-b.试用向量加法法则解释减法法则的合理性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 20:45:44
已知平行四边形OACB与ODEA,向量OA=向量a,向量=向量b,向量OD=向量-b.试用向量加法法则解释减法法则的合理性
已知平行四边形OACB与ODEA,向量OA=向量a,向量=向量b,向量OD=向量-b.试用向量加法法则解释减法法则的合理性
已知平行四边形OACB与ODEA,向量OA=向量a,向量=向量b,向量OD=向量-b.试用向量加法法则解释减法法则的合理性
向量a-向量b=向量a+(向量-b)
即:向量OA-向量OB=向量BA;
向量OA+向量OB=向量OE.
向量BA和向量OE平行且方向相同,则向量BA=向量OE
已知平行四边形OACB与ODEA,向量OA=向量a,向量=向量b,向量OD=向量-b.试用向量加法法则解释减法法则的合理
已知平行四边形OACB与ODEA,向量OA=向量a,向量=向量b,向量OD=向量-b.试用向量加法法则解释减法法则的合理性
已知平行四边形OACB与ODEA.试用向量加法法则解释减法法则的合理性已知平行四边形OACB与ODEA,向量OA=向量a,向量=向量b,向量OD=向量-b.试用向量加法法则解释减法法则的合理性题目就是这样的了
如图已知平行四边形OACB与ODEA,向量OA=向量a,向量OB=向量b,BD=1/3BC,OD与BA相交于E,求证:BE=1/4BA
初二下数学练习册22.9(2) 第一题.关于向量的.如图,已知平行四边形OACB与ODEA,向量OA=向量a,向量OB=向量b,向量OD=-向量b.试用向量加法法则解释减法法则的合理性.具体一点.
已知向量OA=(1,1),向量OB=(-1,2),以向量OA,向量OB作平行四边形OACB,则向量OC与向量AB的夹角为?
已知向量OA=4i-j,OB=-2j,以OA,OB为邻边做平行四边形OACB,则与向量OC共线的单位向量为?
已知向量OA=(1,1),OB=(-1,2)以OA,OB 为边作平行四边形OACB,则向量OC与AB的夹角为?
已知向量0A=(1,1),向量0B=(-1,2),以向量OA,向量0B为边作平行四边形OACB,则向量0C与向量0B的夹角为_____
在平行四边形OACB中 向量BD=1/3向量BC,OD与BA交于E,求BA/BE的值
已知O是平行四边形ABCD对角线AC与BD的交点,若向量AB=向量a,向量BC=向量b,向量OD=向量c,证明向量c+向量a-向量b=向量OB
e1 ,e2是两个不共线向量,已知向量AB=2e1+ke2,向量CB=e1+3e2,向量CD=2e1-e2,若A,B,D三点共线,求实数k值 在平行四边形OACB中,BD=1/3BC,OD与BA相交于点E,求证;BE=1/4BA
在平行四边形OACB中,BD=1/3BC,OD与BA相交于E,证明:BE=1/4BA.(用向量证明)
平行四边形OACB中,BD=1/3BC,OD与BA相交于E.求证:BE=1/4BA 必须用向量法
方向向量的应用在平行四边形OACB中,BD=1/3BC,OD与BA相交于点E,求证:BE=1/4BA
已知四边形ABCD的对角线AC与BD相交于点O,且向量AO=向量OC,向量DO=向量OB,求证 四边形ABCD是平行四边形
求证数学题(高中向量)如图,在平行四边形OACB中,BD=(1/3)BCOD与BA相交于点E求证:BE=(1/4)BA要用向量证明
已知平行四边形ABCD的两条对角线AC与BD交于E,O是任意一点,求证OA向量+OB向量+OC向量+OD向量=4OE向量