已知向量OA=(根号6,0),OB=(0,根号3),向量OM=xOA+μOB,且x^2-μ^2=1,则BM向量的模的最小值为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:11:14
已知向量OA=(根号6,0),OB=(0,根号3),向量OM=xOA+μOB,且x^2-μ^2=1,则BM向量的模的最小值为
已知向量OA=(根号6,0),OB=(0,根号3),向量OM=xOA+μOB,且x^2-μ^2=1,则BM向量的模的最小值为
已知向量OA=(根号6,0),OB=(0,根号3),向量OM=xOA+μOB,且x^2-μ^2=1,则BM向量的模的最小值为
BM^2=(xOA+(μ-1)OB)^2=6x^2+3μ^2-6μ+3=9μ^2-6μ+9
因为μ属于R
所以μ取-b/2a=1/3时BM^2最小值为8
所以BM模长最小2√2
已知向量OB=(2,0),向量OC=(2,2),向量CA=(根号2cosa,根号2Ssina),则向量OA与OB的夹
已知向量OA.向量OC满足条件向量OA+向量OB-向量OC=向量0,且【OA】=【OB】=1,【OC】=根号2则三角形ABC的
已知向量OA的模=1 向量OB模:根号3 向量OA*OB=0,点C在角AOC内,且角AOC=30度 设向量OC=mOA+OB 则m/n等于什么
已知向量OA的绝对值=向量OB的绝对值=向量OC的绝对值=1,向量OA⊥向量OB ,向量CB乘以向量CA≤0,向量OA+向量OB-向量OC的绝对值的最大值?
已知向量OA=(2,0),向量OB=(2+根号2×cosa,2+根号2×sina),则向量OA与向量OB的夹角的取值范围是
已知向量OA=(根号6,0),OB=(0,根号3),向量OM=xOA+μOB,且x^2-μ^2=1,则BM向量的模的最小值为
已知平面上有四点O,A,B,C,满足向量OA+向量OB+向量OC=0,向量OA*向量OB=向量OB*向量OC=向量OC*向量OA求周长
|向量OA|=1,|向量OB|=根号3,向量OA×向量OB=0,点C满足:∠AOC=30°,且向量OC=m向量OA+n向量OB,则m/n=?
已知OA向量的模为1,OB向量的模为根号3.OA向量与OB向量的积为0,点C在线段AB上,且角AOC=30°...已知OA向量的模为1,OB向量的模为根号3.OA向量与OB向量的积为0,点C在线段AB上,且角AOC=30°,设OC向量=mOA向
向量OA+向量OB+向量OC=0向量,且OA=1 OB=2 OC=根号3 则三角形ABC面积
已知向量OA的模=2,向量OB的模=2根号3,向量OA*向量OB=0,点C在AB上角AOC=30°,用向量OA和向量OB来表示向量OC,则向量OC等于
已知向量OA的模=2,向量OB的模=2根号2,向量OA*向量OB=0,点C在AB上角AOC=30°,用向量OA和向量OB来表示向量OC,则向量OC等于
已知向量OA,OB,OC满足条件OA+OB+OC=0(都是向量),且|OA|=|OB|=|OC|=1,求证:△ABC是正三角形
已知向量OA,OB,OC满足条件OA+OB+OC=0(都是向量),且|OA|=|OB|=|OC|=1,求证:△ABC是正三角形
已知O为坐标原点,向量OA=(2asin^2x,a),向量OB=(1,负2根号3sinxcosx),f(x)=向量OA乘向量OB+b(a不等于0)...已知O为坐标原点,向量OA=(2asin^2x,a),向量OB=(1,负2根号3sinxcosx),f(x)=向量OA乘向量OB+b(a不等于0) (1)求函数
已知O为ΔABC的重心,证明 向量OA+向量OB+向量OC=0
已知△OAB是以OB为斜边的等腰直角三角形,OB=根号2 向量OC=向量OA+(1-a)向量OB,向量OC=向量OA+(1-a)向量OB 若a^2>1 则向量OC*向量AB的取值范围是( )A.(负无穷,0)∪(2,正无穷) B,(负无穷,-2)∪
已知O为坐标原点,向量OA=(1,0),向量OB=(cosX,sinX),OC=(cos2x,sin2x)求证OA+OC与OB共线,且OA-OC与OB垂直已知O为坐标原点,向量OA=(1,0),向量OB=(cosX,sinX),OC=(cos2x,sin2x).求证OA+OC与OB共线,且向量OA-向量OC与OB垂直