f0(x)=sinx,f1(x)=f'0(x),f2(x)=f'1(x),...,fn+1(x)=f'n(x) (n∈N)由此归纳推测f2009(x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 10:17:24

f0(x)=sinx,f1(x)=f'0(x),f2(x)=f'1(x),...,fn+1(x)=f'n(x) (n∈N)由此归纳推测f2009(x)
f0(x)=sinx,f1(x)=f'0(x),f2(x)=f'1(x),...,fn+1(x)=f'n(x) (n∈N)由此归纳推测f2009(x)

f0(x)=sinx,f1(x)=f'0(x),f2(x)=f'1(x),...,fn+1(x)=f'n(x) (n∈N)由此归纳推测f2009(x)
f1(x)=(sinx)'=cosx
f2(x)=(cosx)'=-sinx
f3(x)=(-sinx)'=-(sinx)'=-cosx
f4(x)=(-cosx)'=-(cosx)'=sinx=f0(x)
所以是4个一循环
2009÷4余数是1
所以f2009(x)=f1(x)=cosx

f0(x)=xe^x,f1(x)=f0'(x),f2(x)=f1'(x),.,fn(x)=f'n-1(x)(n∈N^*),f2012(0)=? f0(x)=sinx,f1(x)=f'0(x),f2(x)=f'1(x),...,fn+1(x)=f'n(x) (n∈N)由此归纳推测f2009(x) 设f0(x)=sinx,f1(x)=f'0(x),f2(x)=f'1(x),……,f(n+1)(x)=f'n(x)n∈N求f2005(x)=()A,sinx B,-sinx C,cosx D,-cosx 设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2013(x)=( )f0(x)=sinxf1(x)=f0'(x)=cosxf2(x)=f1'(x)=-sinxf3(x)=f2'(x)=-cosxf4(x)=f3'(x)=sinx.可以看出,以4为周期进行循环2013/4=503×4+1所以f2013(x) 设f0(x)=cosx,f1(x)f0'(x),f2(x)=f1'(x),...,fn+1(x)=fn'(x),n属于正整数,则f2008 若函数fx=x+bx+c对任意实数x,都有f(1-x)=f(1+x),则f1.f0.f3的大小关系 f(X)是一元三次多项式,F(2)=F(3)=0,F(0)=6 ,F(1)=12,求F()怎样做要选f0的还是f1的, 二次函数fx=ax^2+bx+c满足f(1+x)=f(1-x)且f0=3,f1=2,函数的解析试是 2014年江苏高考数学卷第26题怎么做才好?真的很难啊,不愧是压轴题.已知函数f0(x)=sinx/x,(x>0),设fn(已知函数f0(x)=sinx/x,(x>0),设fn(x)为fn-1(x)的导数,n属于N *,(1)求2f1(π/2)+(π/2)f2(π/2)的值;(2)证明:对 设 f(x)=sinx,f1(x)=f'(X),f2(X)=f1'(X).fn+1(X)=fn'(X) n属于N+ 求f2007(X)=? 已知二次函数fx满足f(1+x)=f(1-x),且f0=0,f1=1,若fx在区间[m,n]上的值域是,则见图!鼠标左键点击放大! 设函数f0(x)=绝对值x,f1(x)=绝对值f0(x)-1,f2(x)=绝对值f1(x)-2,求函数y=f2(x)的图像与x轴所围成的封闭图形的面积. f'x=sin(x-1)^2 f0=0 求∫ (0,1) f(x)dx 一道大一的微积分题目 Consider the function f(x) = xx; x > 0.(a) Find f0(x) and f00(x).(b) Solve f0(a) = 0.Is there any b > 0 such that f00(b) = (c) It is clear that f0(x) < 0 for x < a and f0(x) > 0 for x > a.Therefore f is decreasing on(0; 已知函数f(x)=x^3+ax^2+bx+c f0=0 f1=1 fx在(-2,1/4)上有极小值 求a的取值范围 已知两次函数fx=x2+bx+c,且f0=-3,f1=4.求f(x)解析试 设函数f0(x)=|x|,f1(x)=|f0(x)-1|求函数y=f1(x)的图像与x轴所围成的封闭部分图形的面积 设函数f0(x)=|x|,f1(x)=|f0(x)-1|,求函数y=f1(x)的图像与x轴所围成的封闭部分图形的面积.