大学微积分,求极限的题目,求教!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 11:24:56

大学微积分,求极限的题目,求教!
大学微积分,求极限的题目,求教!
 

大学微积分,求极限的题目,求教!
属1^∞型极限,须用罗必塔法则,n为整数不能进行求导运算,故须化离散型变量n∈Z为连续性变量x∈R(由归结原则是可以这样进行的),最后还运用了sinx的泰勒展开式:
 lim(n→∞){[ntan(1/n)]^n²}
=lim(n→∞)e^{n²ln[ntan(1/n)]}
=lim(x→0)e^{【ln[(tanx)/x]】/x²}
=lim(x→0)e^{【ln[(tanx)/x]】'/(x²)'}
=lim(x→0)e^{[(xsec²x-tanx)/(xtanx)]/(2x)}
=lim(x→0)e^[(xsec²x-tanx)/(2x²tanx)]
=lim(x→0)e^[(x-sinxcosx)/(2x²sinxcosx)]
=lim(x→0)e^[(2x-sin2x)/(2x²sin2x)]
=lim(x→0)e^{[2x-(2x)+(1/3!)(2x)³-o(x³)]/2x²[(2x)-(1/3!)(2x)³+o(x³)]}
=lim(x→0)e^{[(4/3)x³-o(x³)]/[4x³-(8/3)x⁵+o(x⁵)]}
=lim(x→0)e^{[(4/3)-o(1)]/[4-(8/3)x²+o(x²)]}
=e^(1/3)