求摆线x=a(t-sint),y=a(1-cost)的一拱与横轴围成的图形面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:55:16

求摆线x=a(t-sint),y=a(1-cost)的一拱与横轴围成的图形面积
求摆线x=a(t-sint),y=a(1-cost)的一拱与横轴围成的图形面积

求摆线x=a(t-sint),y=a(1-cost)的一拱与横轴围成的图形面积

利用参数方程求面积的公式解定积分

 

过程如下图:

 

高等数学摆线求摆线x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2∏) 的长度 求摆线x=a(t-sint),y=a(1-cost)的一拱,y=0,绕直线y=2a旋转所得的体积.请问摆线要怎么画? 求摆线的参数方程x=a(t-sint) 和 y=a(1-cost)所确定的函数y=y(x)的求摆线的参数方程x=a(t-sint) 和 y=a(1-cost)所确定的函数y=y(x)的二阶导数 .答案是-1/a(1-cost)^2 高数:摆线x=a(t-sint),y=a(1-cost)(0《=t《2π)确定隐函数y=y(x),求dy/dx 求摆线x=a(t-sint),y=a(1-cost)的一拱与横轴围成的图形面积 求摆线x=a(t-sint) y=a(1-cost)在对应t=π/2的点处切线方程和法线方程 求摆线x=a[t-sint] y=a[1-cost] 的一拱0≤t≤2π.与横轴围成的图形面积 由摆线x=a(t-sint),y=a(1-cost),0最好用格林公式求解 为什么摆线x=a(t-sint),y=a(1-cost)的一拱的区间为[0,2πa] 摆线x=a(1-sint),y=a(1-cost)(a>0)一拱(0≤t≤2π)的弧长等于 用matlab以动画的方式绘制出摆线 x=a(t-sint) y=a(1-cost) (a自己赋值)的渐屈线 根据2阶导数 研究摆线(旋轮线)x=a(t-sint) ,y=a(1-cost) (a>0)的凹凸性. 求摆线x=a(t-sint),y=a(1-cost)的一拱(0≤t≤2π)与y=0绕x轴所转成图形的体积. 用曲线积分求摆线一拱的面积摆线参数方程x=a(t-sint) y=a(1-cost) 答案为3PI*a^2 怎样算都对不上这答案 求由摆线x=a(t-sint),y=a(1-cost)的一拱(0≦t≦2ㄇ)与x轴所围成的图形的.面积 在摆线x=a(t-sint),y=(1-cost)上求分摆线第一拱成1:3的点的坐标在摆线x=a(t-sint),y=a(1-cost)上求分摆线第一拱成1:3的点的坐标,大侠们我题目打错了,这个才是我要问的题目 ∫y ds,其中L为摆线一拱x=a(t-sint) y=a(1-cost)的曲线积分32a^2 / 3 ∫y^2ds(积分区域为L),其中L为摆线的一拱x=a(t-sint),y=a(1-cost),(0