已知动点M的坐标满足方程13根号x^2+y^2=12x +5y -12的绝对值,则动点M的轨迹是?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:00:43
已知动点M的坐标满足方程13根号x^2+y^2=12x +5y -12的绝对值,则动点M的轨迹是?
已知动点M的坐标满足方程13根号x^2+y^2=12x +5y -12的绝对值,则动点M的轨迹是?
已知动点M的坐标满足方程13根号x^2+y^2=12x +5y -12的绝对值,则动点M的轨迹是?
根号x^2+y^2=|12x+5y-12|/13 所以M到原点的距离等于到直线12x+5y-12=0的距离,所以其轨迹是以原点为焦点12x+5y-12=0为准线的抛物线(因为是求轨迹不是轨迹方程,这样答就可以了)
加我 我告诉你
已知动点M的坐标满足方程13根号x^2+y^2=12x +5y -12的绝对值,则动点M的轨迹是?
已知动点M的坐标满足方程5倍的根号X^2+Y^2=13X+4Y+12的绝对值,则动点M的轨迹是?
已知动点M的坐标满足方程5倍的根号X^2+Y^2=13X+4Y+12的绝对值,则动点M的轨迹是?
已知动点M的坐标满足方程13根号x^2+y^2=12x +5y -12的绝对值,则动点M的轨迹是?根号x^2+y^2=|12x+5y-12|/13 所以M到原点的距离等于到直线12x+5y-12=0的距离
已知动点M的坐标满足方程:13√(x^2+y^2)=| 12x+5y-12|,则动点M的轨迹是:A抛物线B双曲线C椭圆RT 请给出理由.
已知M(-1,0),N(1,0),动点P(x,y)满足:|PM|+|PN|=2倍根号3,求p的轨迹C的方程
已知双曲线C的中心在坐标原点,渐近线方程是3x+2y=1左焦点的坐标为(-根号13,0),A ,B为双曲线上的动点,满足OA向量乘以OB向量=0,求OA模长的平方分之一+OB模长的平方分之一怎么用极坐标方程做
已知动点P的坐标满足方程√(x-1)^2+(y-2)^2=|2x-y+3|,则点P的轨迹为RT
已知两点M(-2,0),N(2,0),点p为坐标平面内的动点,满足MN×MP+MN×NP=0,则动点P(x,y)的轨迹方程为
已知动直线y=kx交圆(x-2)^2+y^2=4于坐标原点O和点A,交直线x=4于点B,若动点M满足向量OM=向量AB,动点M的轨迹C的方程为F(x,y)=0(1)试用k表示点A,点B的坐标(2)求动点M的轨迹方程F(x,y)=0
1、定长为4的线段AB的两端点分别在X轴、Y轴上滑动,求AB中点的轨迹方程.2、已知A、B两点的坐标是(1,0)、(-1,0),动点M满足MA垂直于MB,求动点M的轨迹方程.3、已知动点C到点A(2,0)的距离是
已知点M(-2,0),N(2,0),动点P满足条件.已知点M(-2,0),N(2,0),动点P满足条件PM-PN=2根号2,记动点P的轨迹为W,求(1)W的方程;(2)若A、B是W上的不同两点,O是坐标原点,求向量OA乘以向量OB的最小
平面直角坐标系中,O为坐标原点,已知两定点A(1,0),B(0,-1),动点P(x,y)满足向量OP=m向量OA+(m-1)*向量OB,求点P的轨迹方程
已知双曲线x^2-y^2=2的右焦点为F,过点F的动直线与双曲线相交于A,B两点,点C的坐标是(1,0)(1)证明:向量CA×CB为常数(2)若动点M满足向量CM=CA+CB+CO(O为坐标原点),求点M的轨迹方程
已知点P是圆x^2+y^2-4x-4y+4=0上的一个动点,点A的坐标为(10,0),点M满足向量MP=向量AM,当点P在远上运动时求点M的轨迹方程
已知a,b两点坐标是(1,0),(-1,0).动点m满足ma⊥mb,求动点m的轨迹方程rtttttttttt
已知A(2,-1),B(-1,1),O是坐标原点,动点M满足向量OM=m向量OA+n向量OB,且2m^2-n^2=2,求M的轨迹方程
已知A(2,1)B(-1,1),0为坐标原点,动点M满足向量OM=m向量OA+n向量OB,且2m^2-n^2=2,M的轨迹方程