(1985+1987+1989+...+1999)/(1986+1988+1990...+2000)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:43:20
(1985+1987+1989+...+1999)/(1986+1988+1990...+2000)
(1985+1987+1989+...+1999)/(1986+1988+1990...+2000)
(1985+1987+1989+...+1999)/(1986+1988+1990...+2000)
(1999-1985)÷2+1=8
(2000-1986)÷2+1=8
分子分母各有8个数
分子平均数(1985+1999)÷2=1992
分母平均数(1986+2000)÷2=1993
(1985+1987+1989+...+1999)/(1986+1988+1990...+2000)
=(1992×8)/(1993×8)
=1992/1993
原式==((1985+1999)*15/2)/((1986+2000)*15/2)
==1985+1999/1986+2000
==3984/3986
(1985+1987+1989+...+1999)/(1986+1988+1990...+2000)
分子每一项加1 分子就变为和分母一样 总共加8个1 所以-8才不变
(1985+1987+1989+...+1999)/(1986+1988+1990...+2000)
=(1985+1+1987+1+1989+1+...+1999+1-8)/(1986+1988+19...
全部展开
(1985+1987+1989+...+1999)/(1986+1988+1990...+2000)
分子每一项加1 分子就变为和分母一样 总共加8个1 所以-8才不变
(1985+1987+1989+...+1999)/(1986+1988+1990...+2000)
=(1985+1+1987+1+1989+1+...+1999+1-8)/(1986+1988+1990...+2000)
=(1986+1988+1990...+2000-8)/ (1986+1988+1990...+2000)
=1- 8/ (1986+1988+1990...+2000)
收起