求英语牛人帮忙翻译一段化学类英文After the innovative work of Kasuga et al. [1], titanium dioxideand titanate nanotubes (TNTs) with large specific surface area andpore volume have gained promising and important prospect due totheir fas
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:50:32
求英语牛人帮忙翻译一段化学类英文After the innovative work of Kasuga et al. [1], titanium dioxideand titanate nanotubes (TNTs) with large specific surface area andpore volume have gained promising and important prospect due totheir fas
求英语牛人帮忙翻译一段化学类英文
After the innovative work of Kasuga et al. [1], titanium dioxide
and titanate nanotubes (TNTs) with large specific surface area and
pore volume have gained promising and important prospect due to
their fascinating microstructures and excellent properties. Titania
and TNTs are particularly interesting partly because they have large
specific surface area, leading to a higher potential of applications
in catalysis [2], semiconductor device [3], and photovoltaic cell [4].
Additionally, the issues like structure stability and corresponding
crystalline phases at various synthesis temperatures remain to be
addressed fromthe point of the view of practical application [5–9].
Rare earth ions have been widely used in high-performance
luminescence devices, catalysts and other functional materials
because of the electronic, optical and chemical characteristics originating
fromtheir 4f electrons [10]. The red luminescence of Eu3+ ion
has been extensively used in the lighting and displays for its distinct
4f–4f transitions. The f-electrons of Eu3+ ions arewell shielded from
the chemical environment and own almost retained atomic character
[11]. In consequence, the f–f emission spectra of Eu3+ consist
of sharp lines.
Rare earth titanates have interesting dielectric, piezoelectric and
ferroelectric properties [12–14]. These materials usually possess
a pyrochlore structure [15–18], which find numerous applications
such as hosts for fluorescence centers, high temperature pigments,
catalysts, thermal barrier coatings, and ionic/electronic conductors,etc. [19–21]. In order to produce new light conversion molecular
devices LCMDs [22] with high thermal stability and processability
in comparison with traditional lanthanide complexes, Eu(III)
titanates have been adopted [23], which were shown to have efficient
red-light emission in the UV irradiation. These phosphors are
relatively stable and have strong absorption in the UV region.
To date, the synthetic routes for TNTs have always been complex
and time-consuming, and furthermore, reports on the synthesis
of Eu(III) titanates nanotubes by the same method are scarce.
In addition, little work has been focused on the study of the
photoluminescence properties of these novel one-dimensional
nanostructures. Nevertheless, it still remains a challenge to investigate
the relationship between luminescence and nanostructure of
Eu(III) titanates.
In thiswork,we report that Eu(III) titanate (Eu2Ti2O7) nanotubes
have been successfully synthesized fromsheet titanate (NaEuTiO4)
by hydrothermal method at various reaction temperatures ranging
from 110 to 150 ◦C. Moreover, the photoluminescence of Eu(III)
titanate (Eu2Ti2O7) nanotubes synthesized at various hydrothermal
temperatures have been investigated.
求英语牛人帮忙翻译一段化学类英文After the innovative work of Kasuga et al. [1], titanium dioxideand titanate nanotubes (TNTs) with large specific surface area andpore volume have gained promising and important prospect due totheir fas
创新的工作之后,Kasuga缪群.[1],二氧化钛
TNTs钛纳米管)、比表面积和大
孔隙体积得到承诺和重要的前景因
他们迷人的微结构和优良的性能.提泰妮娅:
TNTs特别有趣的部分,因为他们都大
比表面积,导致更高的潜在的应用
在催化[2],[3]的半导体器件、光伏电池[4].
另外,这个问题及相应的结构稳定性
在各种合成晶温度保持
寄上点的实际应用[5-9].
稀土离子被广泛地应用于高性能
有机电致发光器件、催化剂和其他功能材料
由于电子、光学和化学特性来源于
fromtheir 4f电子[10].红色发光的Eu3 +离子
已被广泛用于照明,具体表现为以其鲜明的
4f-4f过渡.这个f-electrons Eu3 +离子的arewell屏蔽
化学环境和自身几乎角色.保留原子
[11].结果,f-f发射光谱的Eu3 +组成
尖锐的线.
稀土钛酸酯有有趣的介质,压电陶瓷和
[12-14铁电性质.这些材料一般
一个pyrochlore结构[15-18],发现许多应用
如主机为荧光中心、高温颜料,
催化剂,热障涂层、离子/电子导线,等.[19-21].为了创造新的光转换的分子
LCMDs装置(22)高的热稳定性和加工性能
与传统的稀土配合相比,欧盟(III).
采用钛酸酯(23),这是已经证实有效
red-light紫外线照射的排放.这些磷
相对稳定,有较强的吸附在紫外光区域.
到目前为止,该合成路线,TNTs一直错综复杂
耗时的,而且报告的合成
欧盟(III)钛酸酯奈米碳管用同样的方法是难得的.
此外,小的工作一直关注的研究
这些新奇的一维发光特性
奈米结构.然而,这仍然是一个挑战进行调查
发光和纳米之间的关系
欧盟(III)钛酸酯.
我们发现,在thiswork欧盟(III)Eu2Ti2O7钛酸)
fromsheet已经成功地合成了钛酸NaEuTiO4).
通过水热合成法等各种不同反应温度
从110至150◦C.另外,发光的欧盟(III).
Eu2Ti2O7钛酸合成各种热)奈米碳管
温度进行了研究.
创新的工作之后,Kasuga缪群。[1],二氧化钛
TNTs钛纳米管)、比表面积和大
孔隙体积得到承诺和重要的前景因
他们迷人的微结构和优良的性能。提泰妮娅:
TNTs特别有趣的部分,因为他们都大
比表面积,导致更高的潜在的应用
在催化[2],[3]的半导体器件、光伏电池[4]。
另外,这个问题及相应的结构稳定性<...
全部展开
创新的工作之后,Kasuga缪群。[1],二氧化钛
TNTs钛纳米管)、比表面积和大
孔隙体积得到承诺和重要的前景因
他们迷人的微结构和优良的性能。提泰妮娅:
TNTs特别有趣的部分,因为他们都大
比表面积,导致更高的潜在的应用
在催化[2],[3]的半导体器件、光伏电池[4]。
另外,这个问题及相应的结构稳定性
在各种合成晶温度保持
寄上点的实际应用[5-9]。
稀土离子被广泛地应用于高性能
有机电致发光器件、催化剂和其他功能材料
由于电子、光学和化学特性来源于
fromtheir 4f电子[10]。红色发光的Eu3 +离子
已被广泛用于照明,具体表现为以其鲜明的
4f-4f过渡。这个f-electrons Eu3 +离子的arewell屏蔽
化学环境和自身几乎角色。保留原子
[11]。结果,f-f发射光谱的Eu3 +组成
尖锐的线。
稀土钛酸酯有有趣的介质,压电陶瓷和
[12-14铁电性质。这些材料一般
一个pyrochlore结构[15-18],发现许多应用
如主机为荧光中心、高温颜料,
催化剂,热障涂层、离子/电子导线,等。[19-21]。为了创造新的光转换的分子
LCMDs装置(22)高的热稳定性和加工性能
与传统的稀土配合相比,欧盟(III)。
采用钛酸酯(23),这是已经证实有效
red-light紫外线照射的排放。这些磷
相对稳定,有较强的吸附在紫外光区域。
到目前为止,该合成路线,TNTs一直错综复杂
耗时的,而且报告的合成
欧盟(III)钛酸酯奈米碳管用同样的方法是难得的。
此外,小的工作一直关注的研究
这些新奇的一维发光特性
奈米结构。然而,这仍然是一个挑战进行调查
发光和纳米之间的关系
欧盟(III)钛酸酯。
我们发现,在thiswork欧盟(III)Eu2Ti2O7钛酸)
fromsheet已经成功地合成了钛酸NaEuTiO4)。
通过水热合成法等各种不同反应温度
从110至150◦C。另外,发光的欧盟(III)。
Eu2Ti2O7钛酸合成各种热)奈米碳管
温度进行了研究。
收起