计算利润最大化两件商品A B A的进价是1.15 售价5 B的进价是1.7 售价7 总共买1000件商品 请问怎么分配利润才是最大化的 因为B不如A好销售 所以成本控制在1200以内 这个补充一下
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:27:13
计算利润最大化两件商品A B A的进价是1.15 售价5 B的进价是1.7 售价7 总共买1000件商品 请问怎么分配利润才是最大化的 因为B不如A好销售 所以成本控制在1200以内 这个补充一下
计算利润最大化
两件商品A B A的进价是1.15 售价5 B的进价是1.7 售价7 总共买1000件商品 请问怎么分配利润才是最大化的
因为B不如A好销售 所以成本控制在1200以内 这个补充一下
计算利润最大化两件商品A B A的进价是1.15 售价5 B的进价是1.7 售价7 总共买1000件商品 请问怎么分配利润才是最大化的 因为B不如A好销售 所以成本控制在1200以内 这个补充一下
设A进x件,B进1000-x件,根据题意则1.15x+1.7(1000-x)≤1200,
设利润M,则M=(5-1.15)x+(7-1.7) *(1000-x)=3.85x-5.3x+5300= -1.45x+5300
根据1.15x+1.7(1000-x)≤1200,可知x≥10000/11,x为整数,所以x=910时利润M最大,
即A进910件,B进90件,可保证成本控制及利润最大化
1、成本控制在1200内,则B货最多只能购得90件,从利润来说B货利润高可以购得1000件,所以综合是B货购进90件,A或购进910件(货物只能是正整数)
A利润是:5-1.15=3.85 占投资1.15的335%
B利润是:7-1.7=5.3 占投资1.7的312%
而A投资与B投资的比例是1.15:1.7=1:1.48
A利润与B利润的比例是335%:312%=1:0.93
故按两个比例分配为0.93X=1.48求出X=1.59 ,A与B按1.59:1的比例分配利润最大
设进两种商品分别为 x 件、y 件,根据题意可得:
(1)x+y = 1000 ;
(2)1.15x+1.7y ≤ 1200 ;
(3)x ≥ 0,y ≥ 0 ,且 x、y 都是整数。
目标函数:z = (5-1.15)x+(7-1.7)y ,
由(1)得 y = 1000-x ,
代入(2)得 1.15x+1.7(1000-x) ≤ 1200 ,<...
全部展开
设进两种商品分别为 x 件、y 件,根据题意可得:
(1)x+y = 1000 ;
(2)1.15x+1.7y ≤ 1200 ;
(3)x ≥ 0,y ≥ 0 ,且 x、y 都是整数。
目标函数:z = (5-1.15)x+(7-1.7)y ,
由(1)得 y = 1000-x ,
代入(2)得 1.15x+1.7(1000-x) ≤ 1200 ,
解得 10000/11 ≤ x ≤ 1000 ,
因此 z = (5-1.15)x+(7-1.7)(1000-x) = 5300 - 29/20*x ,
要使 z 最大,就要使 x 最小,
所以,当 x = 910 (此时 y = 90 )时,利润最大。
答:需要时 A 中产品 910 件,B 种产品 90 件,可使利润最大 。
收起