解三角形 (27 15:53:31)在三角形ABC中,已知acosA+bcosB=ccosC,试判断三角形ABC的形状

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 20:22:00

解三角形 (27 15:53:31)在三角形ABC中,已知acosA+bcosB=ccosC,试判断三角形ABC的形状
解三角形 (27 15:53:31)
在三角形ABC中,已知acosA+bcosB=ccosC,试判断三角形ABC的形状

解三角形 (27 15:53:31)在三角形ABC中,已知acosA+bcosB=ccosC,试判断三角形ABC的形状
令k=a/sinA=b/sinB=c/sinC
所以a=ksinA
b=ksinB
c=ksinC
代入acosA+bcosB=ccosC,并约去k
sinAcosA+sinBcosB=sinCcosC
sin2A+sin2B=2sinCcosC
sin[(A+B)+sin(A-B)]+sin[(A+B)-sin(A-B)]=2sinCcosC
sin(A+B)cos(A-B)+cos(A+B)sin(A-B)+sin(A+B)cos(A-B)-cos(A+B)sin(A-B)=2sinCcosC
2sin(A+B)cos(A-B)=2sinCcosC
sin(A+B)=sin(180-C)=sinC
所以cos(A-B)=cosC
所以A-B=C
A=B+C
所以A=90
所以是直角三角形
2.
∵acosA+bcosB=ccosC
∴sinAcosA+sinBcosB=sinCcosC
∴sin2A+sin2B=sin2C=sin(2π-2A-2B)=-sin(2A+2B)
∴0=sin2A+sin2B+sin(2A+2B)
=sin2A+sin2B+sin2Acos2B+sin2Bcos2A
=sin2A(1+cos2B)+sin2B(1+cos2A)
=4sinAcosA(cosB)^2+4sinBcosB(cosA)^2
=4cosAcosBsin(A+B)
∵sin(A+B)=sin(π-C)=sinC>0
∴cosA=0或cosB=0
∴A=π/2或B=π/2
∴△ABC是直角三角形
3.
acosA+bcosB=ccosC,
a*(b^2+c^2-a^2)/2bc+b*(a^2+c^2-b^2)/2ac=c*(a^2+b^2-c^2)/2ab,
方程式各项同时乘以2abc,得到
a^4+b^4-2(ab)^2=c^4,
(a^2-b^2)^2=c^4,
a^2-b^2=c^2,
a^2=b^2+c^2,
角A为直角,则三角形ABC为直角三角形.

解三角形 (27 15:53:31)在三角形ABC中,已知acosA+bcosB=ccosC,试判断三角形ABC的形状 在三角形abc中,一直三边长分别为15,17,8,则三角形abc的面积是多少?如题 在三角形ABC中,ab=60,S=15,sinA=cosB,求三角形三内角 在三角形ABC中,a=二倍根号三,b=二倍根号二,C=60°,解三角形. 在三角形ABC中b=3,c=三倍根号三,B=30度,解三角形 在三角形ABC中.角A等于三十度.a等于根号二.b等于三.解此三角形. 在三角形ABC三边长分别为AB=15,AC=20,BC=25,求三角形ABC的面积三角形ABC不是直角三角形 三角形三边长9,12,15,求三角形面积? 一个三角形的三条边分别是15米、18米和27米,要在他的三条边上栽树,且每棵树间距相等,需要几棵树 钝角三角形三内角平分线的交点在不在三角形内部 已知在三角形ABC中,tanA=三分之根号三,sinB=而分之根号三,下列判断中,你认为三角形ABC是何三角形? 在三角形abc中,ac=bc,bc边上的中线ad把三角形的周长分为12厘米15厘米两部分,求三 在三角形ABC中,三角形的面积为15,a+b+c=30.A+C=B/2,求三边长? 在三角形ABC中,若三边长分别是9 12 15 ,则以两个这样的三角形所拼成的长方形的面积为多少 在三角形ABC中,若三边长分别为9,12,15,则以两个这样的三角形拼成的矩形面积为____? 在三角形ABC中,若三边长分别为9、12、15,则以这样的三角形拼成的矩形面积为--------. 在ABC中,AB=BC,中线AD将这个三角形的周长分为15和12两部分,求这个三角形的三边长. 在△ABC中,AB=BC,中线AD将这个三角形的周长分为15和12两部分求这个三角形的三边长?