若有理数Q属于M,则数集M必为数域 判断对误这句话是错的它的解释是这样:设M中除了有理数外还有另一个元素根号2,则Q属于M,因为2属于整数所以2倍根号2也必须在M内,而2倍根号2不属于M,故错.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:58:46

若有理数Q属于M,则数集M必为数域 判断对误这句话是错的它的解释是这样:设M中除了有理数外还有另一个元素根号2,则Q属于M,因为2属于整数所以2倍根号2也必须在M内,而2倍根号2不属于M,故错.
若有理数Q属于M,则数集M必为数域 判断对误
这句话是错的
它的解释是这样:设M中除了有理数外还有另一个元素根号2,则Q属于M,因为2属于整数所以2倍根号2也必须在M内,而2倍根号2不属于M,故错.
非常非常不能理解它的解释.
不懂(⊙_⊙)?它的解释为什么要设是根号2?
然后一个人告诉我:由于数域的要求就是任何一个元素,经过加、乘运算之后还属于这个集合才可以.
所以,如果根号2属于M,2是有理数所以属于M,但是根号2和2相乘所得的结果不在M里,它既不是根号2也不是有理数,所以这不是数域.
既然M属于Q为什么要设根号2属于M?..不能理解

若有理数Q属于M,则数集M必为数域 判断对误这句话是错的它的解释是这样:设M中除了有理数外还有另一个元素根号2,则Q属于M,因为2属于整数所以2倍根号2也必须在M内,而2倍根号2不属于M,故错.
总而言之,言而总之,这个题目你不懂,是因为你不懂数域的概念!
弄清数域的概念,这个题目你基本上就了解了.
数集m要想是数域,他必须满足对于加减乘除的运算封闭,才能叫做数域.什么是运算封闭呢?比如有理数集,它里面的数经过运算,结果还是有理数,他不会得到无理数.所以有理数集就是数域.而题中m包括有理数,它还可能包括无理数.但是包括的无理数的个数不能确定.所以如果只包括一个无理数,那么经过加减乘除的运算后(比如根号2加根号2得到2倍根号2)会得到别的无理数,这样就出现了集合m以外的数,所以m不一定具备封闭性.所以m不一定是数域!
对于数域的解释可能还不够细致,你可以在网上查找一下概念,或者找大学的代数数看看,这个概念大学才学.

题设是有理数Q属于M,那就要构造一个这样的M作为反例。所以选择了除Q外还有一个无理数元素根号2的特例。事实上选择根号3,根号5或者pi,e都是一样的。然后这个例子的确能说明原命题不成立。

数域对于+-×÷是封闭的
就是说,数域A中的数通过+-×÷所得到的数仍在数域A中
“它”的解释没错,
令M={√2}∪Q,则 2∈M,√2∈M
但2×√2=2√2不属于M(不属于符号没找到)
故这句话错

若有理数Q属于M,则数集M必为数域 判断对误这句话是错的它的解释是这样:设M中除了有理数外还有另一个元素根号2,则Q属于M,因为2属于整数所以2倍根号2也必须在M内,而2倍根号2不属于M,故错. 设P是一个数集,且至少含有两个数,若对任意a,b属于P,都有a+b,a-b,ab,a/b属于P(除数b不等于0),则P为一个数域,例如有理数集Q为数域.有以下命题:1.整数集是数域;2.有理数集Q包含于M,则数集M必 若有理数数集Q是M的子集,则数集M必为数域是否成立 理由是什么 若有理数数集Q是M的子集,则数集M必为数域(数域即是无限集)是否是真命题 设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a-b、ab、 ∈P(除数b≠0)则称P是一个数域,例如有理数集Q是数域,有下列命题:若有理数集Q包含于M,则数集M必为数域;为什么不对 设P是一个数集,且至少含有两个数,若对任意a,b∈P.都有a+b,a-b,ab,a/b(b≠0∈P,则称P是一个数域.1)若有理数集Q包含于M ,则数集M必为数域.为什么是错误的? 若m是有理数 那m+|m|必是 若m是有理数,则m+|m|必为( )数 有理数是错的, 已知集合M={x|x=a+根号5b,a,b属于z},若p.q属于M,试判断p+q,p-q,p/q是否一定属于M 设P是一个数集,且至少含有两个数,若对任意a,b属于P,都有a+b,a-b,ab,a/b属于P(除数b不等于0),则P为一个数域,例如有理数集Q为数域.有下列命题:1、数域必含有0,1两个数.2、整数集是数域.3、数 若有理数m 若有理数m 若有理数m 己知S是两个整数平方和,即S={x丨x=m平方+n平方,m属于Z,n属于Z}求证1若s,t属于S,则st属于S2若s,t属于S,则s/t=p平方+q平方,其中p,q为有理数 有理数m 若M为正整数,求2的M+2006次方+2的M次方的个为数 有理数M满足|M| 为什么必存在x1=(1/2M) 3Q