设A为n阶实对称矩阵,若A的平方=0,证明A=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:50:23
设A为n阶实对称矩阵,若A的平方=0,证明A=0
设A为n阶实对称矩阵,若A的平方=0,证明A=0
设A为n阶实对称矩阵,若A的平方=0,证明A=0
实对称阵于是A=A‘(A的转置),那么A²=AA’=0
设A=(aij),那么AA‘=(∑(aij)²),于是
(∑(aij)²=0,aij=0,对1≤i,j≤n,这就证明了A=0
设A为n阶实对称矩阵,若A的平方=0,证明A=0
设A为n阶实对称矩阵,若A的平方等于E,证明A是正交矩阵
设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0
设A为n阶对称矩阵,B为n阶反对称矩阵,证明:B的平方为对称矩阵,AB-BA也是对称矩阵
设A为n阶对称矩阵,B为n阶反对称矩阵,证明:B的平方为对称矩阵,AB-BA也是对称矩阵
这几道矩阵题怎么解1.设A为m×n实矩阵,若ATA=0,则A=02.设A= ( -11 4 ),求(A+E)(E-A+A2-A3+A4-A5+A6)-30 113.设A为m阶对称矩阵,B为m×n矩阵,证明:BTAB为n阶对称矩阵4.设A为n阶对称矩阵,B为n阶反对称矩阵,
设A是n阶对称矩阵,B是n阶反对称矩阵,证:3A-B的平方是对称矩阵
设A为n阶实对称矩阵(1)证明:A的平方+E也为实对称矩阵(2)证明:A的平方+EWEI为正定阵(其中E为n阶单位矩阵
关于正定矩阵的 急设A为n阶实对称矩阵 证明 B=I+A的平方 为正定矩阵设A为n阶正定矩阵,AB为是对称矩阵,则AB为正定矩阵的充要条件是B的特征值都大于零
设n阶方阵A满足A平方=I,AA'=I,试证为对称矩阵
设A为n阶实对称矩阵.1.证明A的平方+E也为实对称矩阵2.证明:A的平方+E为正定阵其中E为n阶单位阵
设A为n阶对称矩阵,B是n阶反对称矩阵,证明AB为反对称矩阵的充分必要条件是AB=BA
设A为n阶矩阵,且有n个正交的特征向量,证明:A为实对称矩阵
设A B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA.
设A,B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA
设A为m阶实对称矩阵且正定,B为m×n矩阵,证明:BTAB为正定矩阵的充要条件是rankB=n
已知:A为n阶实正定对称矩阵,B为n阶反实对称矩阵 证:det(A+B)> 0
大学题目 线性代数 设A是n阶实对称矩阵且满足A2=A,又设A的秩为r . 请证明A的特征值为1或0设A是n阶实对称矩阵且满足A2=A,又设A的秩为r . 请证明A的特征值为1或0