y=ln根号下(1-x)^e^x/arccosx求导原式这样

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:34:34

y=ln根号下(1-x)^e^x/arccosx求导原式这样
y=ln根号下(1-x)^e^x/arccosx求导
原式这样

y=ln根号下(1-x)^e^x/arccosx求导原式这样
y = ln√(1-x)^(e^x)/ arccosx
u = ln√(1-x)^(e^x) = ln (1-x)^[(1/2)e^x]
u' = [1/(1-x)^{(1/2)(e^x)}] .{ ((1/2)e^x) (1-x)^[(1/2)e^x -1] } [ (1/2)e^x ] (-1)
= -e^(2x)/[4(1-x)]
v= arccosx
cosv =x
-sinv v' =1
v' = -1/√(1-x^2)
y = u/v
y' =(vdu-udv)/u^2
=[(arccosx)(-e^(2x)/[4(1-x)]) - (ln√(1-x)^(e^x))(-1/√(1-x^2))] /(arcosx)^2
= { -(arccosx)e^(2x)/[4(1-x)] + ln√(1-x)^(e^x) /√(1-x^2)] /(arcosx)^2