已知函数f(x)=e^x-a,g(x)=ln(x+1),(1)求使f(x)>=g(x)在x(-1,正无穷大)上恒成立的a的最大值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:45:14
已知函数f(x)=e^x-a,g(x)=ln(x+1),(1)求使f(x)>=g(x)在x(-1,正无穷大)上恒成立的a的最大值
已知函数f(x)=e^x-a,g(x)=ln(x+1),(1)求使f(x)>=g(x)在x(-1,正无穷大)上恒成立的a的最大值
已知函数f(x)=e^x-a,g(x)=ln(x+1),(1)求使f(x)>=g(x)在x(-1,正无穷大)上恒成立的a的最大值
f(x)>=g(x)
e^x-a>=ln(x+1)
e^x-ln(x+1)>=a
故min[e^x-ln(x+1)]>=a
当x=0时e^x-ln(x+1)取最小值1
故a
已知函数f(x)=e∧x+ax,g(x)=ax-lnx,其中a
已知函数f(x)=e^x-e^-x,g(x)=e^x+e^-x 设f(x)f(y)=4,g(x)g (y)=8,求g(x+y)/g(x-y)
已知函数f(x)=x^2-aln(x)(常数a大于0),g(x)=e^x-x证明e^a大于a
已知函数f(x)=x^2-(2a+1)x+alnx,g(x)=(1-a)x,若存在x在[1/e,e],使得f(x)>=g(x),求a
已知函数f(x)=a/x ,g(x)=x+lnx,若关于x的方程(g(x)-x)/x^=f(x)+x-2e只有一个实数根求a的值
已知函数f(x)=x^2+K,g(x)=e^x/f(x)求导
1.已知函数f(x)=2sin^2 xcos^2 x,x∈R,则f(x)是最小正周期为___的___(奇/偶)函数2.若函数f(x),g(x)分别是R上的奇函数,偶函数,且满足f(x)+g(x)=1/(e^x),则有A.f'(x)+g(x)=0 B.f'(x)-g(x)=0 C.f'(x)+g'(x)=0 D.f(x)-g'(x)=0
已知函数f(x)=(x^2+ax+1)e^x,g(x)=2x^3-3x^2+a+2,其中a
已知函数f(x)=a(x-1)/e^×设g(x)=xlnx-e^x f(x),求g(x)在区间【1,e^2】上的最小值.(其中e为自然对数的底数)
已知函数f(x)=e^x+e^(-x),g(x)=2x+ax^3若对任意x∈R,不等式f(x)≥g‘(x)恒成立,求a的取值范围
已知函数f(x)=x^2+ax-lnx,a€R②令g(x)=f(x)-x^2,若x€(0,e]时,g(x)的最小值是3,求a值.g(x)=f(x)-x^2 = ax-lnx=> g'(x)=a-(1/x)=> 当x属于(0,e]时,g'(x)是增函数why当x属于(0,e]时,g'(x)是增函数网上做的看不懂,(1)
已知函数f(x)=x2-alnx,g(x)=e^x-[x](1)证明:e^a>a(2)当a>2e时,讨函数f(x)在区间(1,e^a)上零点个数
已知函数f(x)=x2-alnx,g(x)=e^x-[x](1)证明:e^a>a(2)当a>2e时,讨函数f(x)在区间(1,e^a)上零点个数
已知函数,g(x)=x/lnx,f(x)=g(x)-ax 若存在x1,x2属于[e,e^]使f(x1)0)成立,求a的范围已知函数,g(x)=x/lnx,f(x)=g(x)-ax 若存在x1,x2属于[e,e^]使f(x1)0)成立,求a的范围
已知函数f(x)=e^x(m-lnx)函数g(x)=x-lnx-f(x)'/e^x已知函数f(x)=e^x(m-lnx)函数g(x)=x-lnx-f(x)’/e^x,的最小值为1,其中f(x)‘为f(x)的导函数,求m的值
已知函数f(x)=(e^x-a)/x,g(x)=alnx+a若x>1时,函数f(x)的图像总在g(x)的图像的上方,求a的范围.
已知a属于R,函数f(x)=a/x+lnx-1,g(x)=(lnx-1)e^x+x(其中e为自然对数的底数)1,求函数f(x)在区间(0,e】上的最小值.
已知定义在R上的函数f(x),g(x)满足f(x)/g(x)=a^x,且f'(x)g(x)