find [f(x+h)-f(x)]/h,h≠0,for the functions defined as follows:(a) f(x)=2x2-3x(b) f(x)=4x-3x2(c) f(x)=x^3求详细过程(不需要英语)(a) f(x)=2x^2-3x(b) f(x)=4x-3x^2(c) f(x)=x^3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:52:41
find [f(x+h)-f(x)]/h,h≠0,for the functions defined as follows:(a) f(x)=2x2-3x(b) f(x)=4x-3x2(c) f(x)=x^3求详细过程(不需要英语)(a) f(x)=2x^2-3x(b) f(x)=4x-3x^2(c) f(x)=x^3
find [f(x+h)-f(x)]/h,h≠0,for the functions defined as follows:
(a) f(x)=2x2-3x
(b) f(x)=4x-3x2
(c) f(x)=x^3
求详细过程(不需要英语)
(a) f(x)=2x^2-3x
(b) f(x)=4x-3x^2
(c) f(x)=x^3
find [f(x+h)-f(x)]/h,h≠0,for the functions defined as follows:(a) f(x)=2x2-3x(b) f(x)=4x-3x2(c) f(x)=x^3求详细过程(不需要英语)(a) f(x)=2x^2-3x(b) f(x)=4x-3x^2(c) f(x)=x^3
就是对于下面三个函数,求出 [f(x+h)-f(x)]/h,
第一个 [f(x+h)-f(x)]/h=((2(x+h)^2-3(x+h))-(2x^2-3x))/h 然后打开括号合并
后面两个一样做法 我觉得题目里面应该h有个无穷小之类的 相当于对下面的三函数各求导函数
given that f(x)=2x-3,find the value of f(x+h).
W M J H H X F
f(g(h(x))) 求导
若f''(x)存在,证明:[f(x+2h)-2f(x+h)+f(x)]/(h^2)=f''(x)
f'(x)=2.则lim[f(x-h)-f(x+2h)]/2h
Find and write in simplest form :Given f(x) = 1/x(a) f(f(b))(b) [f(x) - f(a)]/(x-a)(c) [f(x+h) - f(x)]/h
Find and write in simplest form:Given f(x) = x² :(a) f(f(b))(b) [f(x)-f(a)]/(x-a)(c) [f(x+h)-f(x)]/h
f(x+h)二阶泰勒公式f(x+h)=f(x)+(x-(x+h))f'(x)=f(x)-f'(x)h对吗?
请问lim[f(x-h)-f(x)]/-h 是等于f'(x)还是-f'(x)
设f(x),g(x),h(x)属于F[x].证明[f(x),(g(x),h(x))]=([f(x),(g(x)],[f(x),h(x)])第四题
如何证明lim[f(x+h)+f(x-h)-2f(x)]=f(x) 其中h趋向0
h(x)=max{f(x),
一道数学题(英文的)!关于(The derivatives)1.Let f(x)=2x^2-x a.Using the definition f'(x)=lim [f(x+h)-f(x)]/h,compute f'(2).h→0 b.Using the definition f'(x)=lim [f(x+h)-f(x)]/h,find f'(x).h→0 c.Does the formula in part(b)yield the corr
若f(x)有二阶导数,证明f''(x)=lim(h→0)f(x+h)-2f(x)+f(x-h)/h^2.
f(x)在x=a处可导, lim(h→0) [f(a+h)-f(a-2h)]/h=
设f(x)可微 求limh→0 [f(x+2h)-f(x)]/h
设f(x)具有二阶导数f''(x),证明f''(x)=lim(f(x+h)-2f(x)+f(x-h))/h^2
导数的定义,有式:f``(x)存在,h→0,有式:[f(x+h+h)-f(x+h)]/h 是否可以根据定义得 =f`(x+h)?如题,若f(x)二阶导数存在,h趋近与0,:[f(x+h+h)-f(x+h)]/h =f`(x+h)对吗?