一个正四棱台上、下底面的边长分别为a,b,高为h,且侧面积等于两底面面积之和,则下列关系中正确的是( )A.1/h=1/a+1/b B.1/h=1/(a+b) C.1/a=1/b+1/h D.1/b=1/a+1/h.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:54:43

一个正四棱台上、下底面的边长分别为a,b,高为h,且侧面积等于两底面面积之和,则下列关系中正确的是( )A.1/h=1/a+1/b B.1/h=1/(a+b) C.1/a=1/b+1/h D.1/b=1/a+1/h.
一个正四棱台上、下底面的边长分别为a,b,高为h,且侧面积等于两底面面积之和,则下列关系中正确的是( )
A.1/h=1/a+1/b B.1/h=1/(a+b) C.1/a=1/b+1/h D.1/b=1/a+1/h
.

一个正四棱台上、下底面的边长分别为a,b,高为h,且侧面积等于两底面面积之和,则下列关系中正确的是( )A.1/h=1/a+1/b B.1/h=1/(a+b) C.1/a=1/b+1/h D.1/b=1/a+1/h.
侧面为梯形,要求其面积就要知道高,而这个高就是沿上下底面(正方形)对边中点连线所截的截面(梯形)的边长.
所截梯形上下底为a,b,高为h,得其边长为d^2=(b/2-a/2)^2+h^2
由侧面积等于两底面面积之和得a^2+b^2=4*(1/2)*(a+b)*d
(a^2+b^2)^2/(a+b)^2=4d^2=4h^2+(b-a)^2
(a^2+b^2)^2=[4h^2+(b-a)^2](a+b)^2
=4h^2*(a+b)^2+(b^2-a^2)^2=4h^2*(a+b)^2+(b^2+a^2)^2-4a^2b^2
约掉(b^2+a^2)^2得4h^2*(a+b)^2=4a^2b^2即h^2*(a+b)^2=a^2b^2
开方得h(a+b)=ab即1/h=1/a+1/b
由于输入不方便,平方用^2标记,注意看清楚

B~B就相当于h=a+b
因为是正四棱台所以边长相等
即a=b
所以ha=hb=ab+ab
且a=b
所以答案是B

选折题可以采用极值
当b趋近0,h趋近0 排除B C
当a=b h=0.5a
排除D
如果计算题 直接计算

选 A 死算呗。。
侧面积等于两底面面积之和这个条件 勾股定理算出侧面的高
楼上菜得可以。。。

一个正四棱台上,下底面边长为a,b,侧棱为c,求它的高和斜高? 正四棱台上,下底面边长为a、b,侧棱长为c,求它的高和斜高. 一个正四棱台上、下底面的边长分别为a,b,高为h,且侧面积等于两底面面积之和,则下列关系中正确的是( )A.1/h=1/a+1/b B.1/h=1/(a+b) C.1/a=1/b+1/h D.1/b=1/a+1/h. 棱台~(数学)正四棱台上、下底面的边长为b、a(a>b),且侧面积等于两底面面积之和,则棱台的高是_____ 正四棱台上,下底面边长分别为2和6,则该棱台侧棱长是( ) 正三棱台上、下底面边长分别为a和2a,侧棱与底面所成的角为60º,求棱台的侧面积 已知正四棱台上底面边长为6,高和下底面边长都是12,求它的侧面积 已知正四棱台上底面边长为6,高和下底面边长都是12,求它的侧面积 如图所示,正三棱台上、下底面边长分别为a和2a,侧棱长与底面所成角为60°,求此棱台的侧面积 已知四棱台上,下底面对应边分别为a,b,试求中截面把棱台侧面分成的两部分面积之比好好做吧 已知正四棱台上底面边长为4CM,侧棱和下底面边长都是8CM,求它的侧面积 正三棱台上、下底面边长分别为6和12,高为√6,求以下底面中心为顶点,上底面为底面的三棱锥的侧面积与该棱台的侧面积之比. 在一个正四棱台内有一个以它的上底面为底面,下底面中心为顶点的棱锥,如果棱台上,下底面边长分别为3cm和4cm,棱锥与棱台的侧面积相等,求棱台的高(紧急用)(求详尽过程) 已知正三棱台的侧面和下底面所成的二面角为60°,棱台下底面的边长为a,侧面积为S,求棱台上底面的边长. 我觉的很奇怪的数学题已知六棱台上,下底面边长分别为2和4.高为2,则其体积为 A 32√3 B 28√3 C 24√3 D 20√3 √是根号可以到那里回答 我觉的很奇怪的数学题 已知六棱台上,下底面边长分别为2和4.高为2,则其体积为 A 32√3 B 28√3 C 24√3 D 20√3 √是根号 可以到那里回答 高中数学立体几何——多面体正三棱台上,下底面边长分别为2和6,侧面与下底面所成的二面角为60度,那么这棱台的高是多少?(请告知做法) 有一个正四棱台上底面积36,下底面积81,6,求它的体积