在三角形ABC中,设三个角的对应边分别为a·b·c,向量n(2a+c,b),向量m(cosB,cosC),向量n与向量m垂直.(1)求∠B;(2)若a+2c=4,三角形面积为S,求S的最大值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 21:36:41

在三角形ABC中,设三个角的对应边分别为a·b·c,向量n(2a+c,b),向量m(cosB,cosC),向量n与向量m垂直.(1)求∠B;(2)若a+2c=4,三角形面积为S,求S的最大值.
在三角形ABC中,设三个角的对应边分别为a·b·c,向量n(2a+c,b),向量m(cosB,cosC),向量n与向量m垂直.(1)求∠B;(2)若a+2c=4,三角形面积为S,求S的最大值.

在三角形ABC中,设三个角的对应边分别为a·b·c,向量n(2a+c,b),向量m(cosB,cosC),向量n与向量m垂直.(1)求∠B;(2)若a+2c=4,三角形面积为S,求S的最大值.
向量n与向量m垂直,则
m*n=(2a+c)cosB+b*cosC=0,
b/cosB=-(2a+c)/cosC,
由正弦定理,可得:
sinB/cosB=-(2sinA+sinC)/cosC,
tanB+tanC=-2sinA/cosC,tan(B+C)*[1-tanB*tanC]=-2sin(B+C)/cosC,
cosC*[1-tanB*tanC]=-2cos(B+C),
cosC-sinB*sinC/cosB=-2(cosB*cosC-sinB*sinC),
(1+2cosB)*(cosC-tanB*sinC)=0,
所以cosB=-1/2,或 tanB*tanC-1=0,
B=2π/3,或 cos(B+C)=0 ,(B+C=0,或π,不符题意,舍去)
所以B=2π/3.
因为B=2π/3,
S=1/2*ac*sinB=√3/4*ac,
而a+2c=4,且a>0,c>0,所以
√(a*2c)

【1】∠B=120º.【2】Smax=(√3)/2.

在三角形ABC中,三个内角ABC对应的边分别为abc且ABC成等差数列,abc也成等差数列,则则三角ABC是什么三角形 在三角形ABC中,设三个角的对应边分别为a·b·c,向量n(2a+c,b),向量m(cosB,cosC),向量n与向量m垂直.(1)求∠B;(2)若a+2c=4,三角形面积为S,求S的最大值. 在三角形ABC中,三个内角A角B角C对应的边分别为a,b,c且角A角B角C成等差数列,a,b,c成等比数列.求证三角形 在三角形abc中,abc分别为ABC的对应边,b+c=2,面积为根3/4,角A的最大值 在三角形ABC中,角ABC所对应的边分别为abc,若b平方=ac,z有则角B的取值范围 在三角形ABC中,三个内角A.B.C对应的边分别为a.b.c,且A.B.C成等差数列,a.b.c成等比数列,证明:三角...在三角形ABC中,三个内角A.B.C对应的边分别为a.b.c,且A.B.C成等差数列,a.b.c成等比数列,证明:三角 在三角形ABC中,三个内角ABC所对的边分别为abc,且ABC成等差数列,abc成等比数列 证明三角形ABC为正三角形 在三角形ABC中,三个内角ABC所对的边分别为abc,且ABC成等差数列,abc成等比数列 证明三角形ABC为正三角形 在三角形ABC中,三个内角ABC所对的边分别为abc,且ABC成等差数列,abc成等比数列 证明三角形ABC为正三角形 在三角形ABC中,角A,B,C所对应的边分别为a,b,c设向量m=(a,cosB),n=(b,COSA)且m//n,m不等于n求sinA+sinB的取值范围 已知在三角形abc中,A、B、C为三个内角,a、b、c分别为对应的三条边,π/3 已知在三角形abc中,A、B、C为三个内角,a、b、c分别为对应的三条边,π/3 在三角形abc中,a,b,c 分别为三个角的a,b,c的对边,π/3 设三角形ABC的三个角A、B、C所对应的分别为a、b、c,已知边c=10,又知cosA/cosB=b/a=4/3,求a、b. 在三角形ABC中,角ABC所对应的边分别为a,b,c,若sinA/a=cosB/b=cosC/c,则三角形ABC是什么三角形? 在三角形ABC中,角A,B,C所对应的边分别为a,b,c,若a=csinA,则(a+b)/c的最大值为 在三角形ABC中,设a、b、c分别为角A、B、C的对边,S为三角形ABC的面积,且满足条件4sinB*[sin(派/4 +B/2)]...在三角形ABC中,设a、b、c分别为角A、B、C的对边,S为三角形ABC的面积,且满足条件4sinB*[sin(派/4 + 在三角形ABC中,角A.B.C的对应边分别为a.b.c.若2b=a+c,则角B的范围是