若椭圆x^2/m+y^2/n=1与双曲线x^2/a-y^2/b=1有相同的焦点F1,F2,P是两条直线的一个交点则|PF1|*|PF2|的值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:31:24

若椭圆x^2/m+y^2/n=1与双曲线x^2/a-y^2/b=1有相同的焦点F1,F2,P是两条直线的一个交点则|PF1|*|PF2|的值为
若椭圆x^2/m+y^2/n=1与双曲线x^2/a-y^2/b=1有相同的焦点F1,F2,P是两条直线的一个交点
则|PF1|*|PF2|的值为

若椭圆x^2/m+y^2/n=1与双曲线x^2/a-y^2/b=1有相同的焦点F1,F2,P是两条直线的一个交点则|PF1|*|PF2|的值为
椭圆上任一点P到两焦点距离和为2√m,
即PF1+PF2=2√m,
双曲线上任一点到两焦点的距离差的绝对值为2√a,
即|PF1-PF2|=2√a上面两式求平方差即得:4PF1*PF2=4m-4a
所以,PF1*PF2=m-a.

若椭圆x^2/10+y^2/m=1与双曲线x^2-y^2/b=1有相同的焦点,又椭圆与双曲线交于(√10/3,y),求椭圆及双曲线的方程 若椭圆x^2/m+y^2=1(m>0)与双曲线x^2/n-y^2=1(n>0)有相同的焦点F1F2,P是两曲线的一个交点;三角形F1PF2面积 椭圆x^2/2m^2+y^2/n^2=1与双曲线x^2/m^2-y^2/2n^2=1有公共焦点,求椭圆的离心率 已知椭圆C1:x^2/(m+2)+y^2/n=1与双曲线C2:x^2/m-y^2/n=1共交点,则椭圆的离心率范围为 椭圆x^2/m+y^2=1(m>1)与双曲线.椭圆x^2/m+y^2=1(m>1)与双曲线x^2/n-y^2=1(n>0)有相同的焦点F1 F2,P为两曲线的一个焦点,则△PF1F2的面积是多少? 若椭圆x^2/m+y^2=1(m>1)与双曲线x^2/n-y^2=1有共同的焦点F1,F2,p是两曲线的一个交点,△F1PF2的面积是? 若椭圆x^2/m+y^2/n=1与双曲线x^2/a-y^2/b=1有相同的焦点F1,F2,P是两条直线的一个交点则|PF1|*|PF2|的值为 【双曲线与椭圆共焦点】的题若椭圆x^2/a^2+y^2/b^2=1(a>b>0)和双曲线x^2/m^2-y^2/n^2=1(m>0,n>0)有相同的焦点F1,F2,P是两曲线的交点,则|PF1|*|PF2|的值是A m^2-a^2 B m^2+a^2 C b^2-n^2 D n^2+b^2 双曲线x^2/16-y^2/9=1,椭圆的焦点恰好是双曲线的两个顶点,椭圆与双曲线的离心率互为倒数,椭圆方程? 椭圆和双曲线y^2/16-x^2/m=1(m>0)有相同的焦点,p(3,4根号2)是椭圆与双曲线的一个交点,求m的值及椭圆方程 椭圆x^/3m^+y^/5n^=1和双曲线x^/2m^-y^/3n^=1有公共焦点,双曲线的渐进方程是x^就是x的平方 若椭圆x*2/9+y*2/m=1和双曲线x*2/9-y*2/n的离心率是方程9x*2-18x+8=0的两根,求m,n的值 椭圆C以双曲线x^2-(y^2)/3=1的焦点为顶点,以双曲线的顶点为焦点.(1)求椭圆C的方程(2)若直线l:y=kx+m与椭圆C交于M,N两点(M,N不是左右顶点),且以线段MN为直径的圆过点A(2,0).求证:直线l过定点,并求出 椭圆x^2/m^2+y^2=1(m>1)与双曲线x^2/n^2-y^2=1有公共的焦点F1,F2,P是它们的一个交点,求△F1PF2面积 椭圆x^2/m^2+y^2=1(m>1)与双曲线x^2/n^2-y^2=1有公共的焦点F1,F2,P是它们的一个交点,求△F1PF2面积 解析几何 若椭圆 和双曲线 的共轭双曲线有共同的焦点 P是它们的一个焦点 且若椭圆m(x^2)+5(y^2)=5m 和双曲线3(y^2)-n(x^2)=3n (n>0) 的共轭双曲线有共同的焦点F1 F2,P是它们的一个交点,且PF1垂直于PF2, 已知直线y=x+1与椭圆mx^2+ny^2=1(m>n>0)相交于A,B两点,若弦AB的中点的横坐标为-1/3,则双曲线x^2/m^2-y^ 已知椭圆x^2/m +y^2/n=1与双曲线x^2/p-y^2/q=1(m,n,p,q∈R+)有共同的焦点F1、F2,P是椭圆和双曲线的一个交点,则|PF1|*|PF2|=