有理数的定义是什么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:36:14

有理数的定义是什么
有理数的定义是什么

有理数的定义是什么
有理数是整数和分数的统称,一切有理数都可以化成分数的形式.
有理数域 是 整数环 的分式域,同时也是能包含所有整数的最小的关于 加减乘除(除法里除数不能为0)运算完全封闭的数集.
有理数的定义有很多种等价的方式
比较经典的定义方式是基于整数的,就是说事先已经通过一定严格的逻辑在完善的公理体系里定义了整数以后.然后把包含全部整数的关于加减乘除(除数不为0)运算完全封闭的数域中最小的那个交错有理数域,里面的元素(当然包括所有的整数,和他们任意的加减乘除(除数不为0)之后得到的数也被包含在内)就称为有理数.(根据代数学的理论可以推导出里面所有的元素骑士就是 m/n 的分式形式,注:整数m也能写成 m/1 的分式形式)
还有一种定义方式是基于实数的(在分析、拓扑里常用)
事先用 交换线性连续统 的方式定义实数集.然后定义有理数为满足一定条件的实数即可.

有理数是整数和分数的统称

有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
有理数域 是 整数环 的分式域,同时也是能包含所有整数的最小的关于 加减乘除(除法里除数不能为0)运算完全封闭的数集。
有理数的定义有很多种等价的方式
比较经典的定义方式是基于整数的,就是说事先已经通过一定严格的逻辑在完善的公理体系里定义了整数以后。然后把包含全部整数的关于加减乘除(除数不为0)运算完全封闭的数域中...

全部展开

有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
有理数域 是 整数环 的分式域,同时也是能包含所有整数的最小的关于 加减乘除(除法里除数不能为0)运算完全封闭的数集。
有理数的定义有很多种等价的方式
比较经典的定义方式是基于整数的,就是说事先已经通过一定严格的逻辑在完善的公理体系里定义了整数以后。然后把包含全部整数的关于加减乘除(除数不为0)运算完全封闭的数域中最小的那个交错有理数域,里面的元素(当然包括所有的整数,和他们任意的加减乘除(除数不为0)之后得到的数也被包含在内)就称为有理数。(根据代数学的理论可以推导出里面所有的元素骑士就是 m/n 的分式形式,注:整数m也能写成 m/1 的分式形式)
还有一种定义方式是基于实数的(在分析、拓扑里常用)
事先用 交换线性连续统 的方式定义实数集。然后定义有理数为满足一定条件的实数即可

收起

我不知道只是复制别人的
看我的还不如看楼上的。。。
有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
有理数域 是 整数环 的分式域,同时也是能包含所有整数的最小的关于 加减乘除(除法里除数不能为0)运算完全封闭的数集。
有理数的定义有很多种等价的方式
比较经典的定义方式是基于整数的,就是说事先已经通过一定严格的逻辑在完善的公理体系里定义了整数以后...

全部展开

我不知道只是复制别人的
看我的还不如看楼上的。。。
有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
有理数域 是 整数环 的分式域,同时也是能包含所有整数的最小的关于 加减乘除(除法里除数不能为0)运算完全封闭的数集。
有理数的定义有很多种等价的方式
比较经典的定义方式是基于整数的,就是说事先已经通过一定严格的逻辑在完善的公理体系里定义了整数以后。然后把包含全部整数的关于加减乘除(除数不为0)运算完全封闭的数域中最小的那个交错有理数域,里面的元素(当然包括所有的整数,和他们任意的加减乘除(除数不为0)之后得到的数也被包含在内)就称为有理数。(根据代数学的理论可以推导出里面所有的元素骑士就是 m/n 的分式形式,注:整数m也能写成 m/1 的分式形式)
还有一种定义方式是基于实数的(在分析、拓扑里常用)
事先用 交换线性连续统 的方式定义实数集。然后定义有理数为满足一定条件的实数即可。

收起

有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
有理数域 是 整数环 的分式域,同时也是能包含所有整数的最小的关于 加减乘除(除法里除数不能为0)运算完全封闭的数集。
有理数的定义有很多种等价的方式
比较经典的定义方式是基于整数的,就是说事先已经通过一定严格的逻辑在完善的公理体系里定义了整数以后。然后把包含全部整数的关于加减乘除(除数不为0)运算完全封闭的数域中...

全部展开

有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
有理数域 是 整数环 的分式域,同时也是能包含所有整数的最小的关于 加减乘除(除法里除数不能为0)运算完全封闭的数集。
有理数的定义有很多种等价的方式
比较经典的定义方式是基于整数的,就是说事先已经通过一定严格的逻辑在完善的公理体系里定义了整数以后。然后把包含全部整数的关于加减乘除(除数不为0)运算完全封闭的数域中最小的那个交错有理数域,里面的元素(当然包括所有的整数,和他们任意的加减乘除(除数不为0)之后得到的数也被包含在内)就称为有理数。(根据代数学的理论可以推导出里面所有的元素骑士就是 m/n 的分式形式,注:整数m也能写成 m/1 的分式形式)
还有一种定义方式是基于实数的(在分析、拓扑里常用)
事先用 交换线性连续统 的方式定义实数集。然后定义有理数为满足一定条件的实数即可。

收起

一、加法
  有理数的加法与小学的加法大有不同,小学的加法不涉及到符号的问题,而有理数的加法运算总是涉及到两个问题:一是确定结果的符号;二是求结果的绝对值. 在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,一定要牢记"先符号,后绝对值",熟练以后就不会出错了. 多个有理数的加法,可以从左向右计算,也可以用加法的运算定律计算,但是...

全部展开

一、加法
  有理数的加法与小学的加法大有不同,小学的加法不涉及到符号的问题,而有理数的加法运算总是涉及到两个问题:一是确定结果的符号;二是求结果的绝对值. 在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,一定要牢记"先符号,后绝对值",熟练以后就不会出错了. 多个有理数的加法,可以从左向右计算,也可以用加法的运算定律计算,但是在下笔前一定要思考好,哪一个要用定律哪一个要从左往右计算.    法则    1.同号相加,取相同符号,并把绝对值相加.   2.绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.   3.一个数同0相加,仍得这个数.   定律    Ⅰ.同号相加,取相同符号,并把绝对值相加.   Ⅱ.绝对值不相等的异号两数加减,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.   Ⅲ.一个数同0相加,仍得这个数.   Ⅳ.相反数相加结果一定得0。 交换律和结合律   有理数的加法同样拥有交换律和结合律(和整数得交换律和结合律一样)用字母表示为:   交换律:a+b=b+a 两个数相加,交换加数的位置,和不变。   结合律:a+b+c=(a+b)+c=a+(b+c)
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
二、减法
  有理数减法法则:减去一个数,等于加上这个数的相反数。其中:两变:减法运算变加法运算,减数变成它的相反数。一不变:被减数不变。可以表示成: a-b=a+(-b)。
三、乘法
  (1)两数相乘,同号为正,异号为负,并把绝对值相乘。例;(-5)×(-3)=15 (-6)×4=-24   (2)任何数字同0相乘,都得0. 例;0×1=0   (3)几个不等于0的数字相乘,积的符号由负因数的个数决定。当负因数有奇数个数时,积为负;当负因数有偶数个数时,积为正。并把其绝对值相乘。例;(-10)×〔-5〕×(-0.1)×(-6)=积为正数,而(-4)×(-7)×(-25)=积为负数   (4)几个数相乘,有一个因数为0时,积为0. 例;3×(-2)×0=0 (5)乘积为一的两个有理数互为倒数(reciprocal)。例如,—3与—1/3,—3/8与—8/3
四、除法
  (1)除以一个数等于乘以这个数的倒数。(注意:0没有倒数)   (2)两数相除,同号为正,异号为负,并把绝对值相除。   (3)0除以任何一个不等于0的数,都等于0。   (4)0在任何条件下都不能做除数。[1]

收起

能用整数比表示的数

看看这个http://baike.baidu.com/view/1197.htm

http://baike.baidu.com/view/1197.htm

有理数是整数和分数的统称,

祝学习进步
@