设向量A=(1,0),向量B=(sinx,cosx),0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 21:46:06

设向量A=(1,0),向量B=(sinx,cosx),0
设向量A=(1,0),向量B=(sinx,cosx),0

设向量A=(1,0),向量B=(sinx,cosx),0
|向量a+向量b|
=|(1+sinx,cosx)|
=根号下[(1+sinx)^2+cosx^2]
=根号下(1+2sinx+sinx^2+cosx^2)
=根号下(2+2sinx)
∴其最小值为0,最大值为2

设向量A=(1,0),向量B=(sinx,cosx),0 设向量a,向量b满足|向量a|=1,|向量a-向量b|=根号3,向量a*(向量a-向量b)=向量0,则|2向量a+向量b|=( ).求详解,要步骤.谢谢. 设向量a=(sinX,4cosX),向量b=(cosX,-4sinX),求|向量a+向量b|的最大值 设向量a=(根号3sinx,sinx),向量b=(cosx,sinx),x属于【0,π/2】(1)若丨向量a丨=丨向量b丨,求x的值(2)设函数f(x)=向量a·向量b.求f(x)的最大值 设向量a=(根号3sinx,sinx),向量b=(cos x,sinx),x属于【0,π/2】 (1)若向量a=向量b,求x的 值(2)设函数f(x)=向量a·向量b.求f (x)的最大值 若向量a=(sinx,m),向量b=(sinx+√3cosx,1)设f(x)=向量a×向量b.(1)写出若向量a=(sinx,m),向量b=(sinx+√3cosx,1)设f(x)=向量a×向量b.(1)写出函数f(x)的解析式,并指出它的最小正周期 (2)若x∈[0,π/3],f(x)的最小 设向量a=(cosx,-√3sinx),向量b=(√sinx,-cosx)函数f(x)=向量a*向量b-1,求f(x) 一道向量题,希望解答下,已知 a向量=(cosx,sinx) b向量=(cosx,-sinx) (x属于R)(1) 计算:(a向量+b向量)*(a向量-b向量)(2) 设 f(x)=a向量*b向量求f(x)的最小值及大最正周期2π/2=π 口述下。 已知向量a=(sinx,cosx),向量b=sinx,sinx),向量c=(-1,0) 若向量a*向量b=1/2(sinx+cosx),求tanx 设a向量不等于0向量,a向量点乘b向量=a向量点乘c向量,且b向量不等于c向量.求证:a向量垂直于(b向量-c向量) 设向量a=(sinx,-sinx),向量b=(cosx,sinx),f(x)=向量a*向量b+1/2,x∈R.若向量a与向量b的夹角为π/3,且x∈(0,π)U(π,2π),求x的值. 若向量a=(cosx,sinx),向量b=(cosy,siny),且|k*向量a+向量b|=根号3*|向量a-k*向量b|(k大于0,k属于R)(1)用k表示向量a*向量b(2)求向量a*向量b的最小值,并求出此时向量a与向量b的夹角 已知向量m=(1,1),向量n与向量m的夹角为3派/4,且向量m·向量n=-1.设向量a=(1,0),向量b=(cosx,sinx),其中x属于R,若向量n·向量a=0,试求|向量n+向量b|的取值范围. 设向量a=(-2sinx,2cosx)(0 设向量a,向量b满足|向量a|=|向量b|=1,向量a●向量b=-1/2则|向量a 2向量b|等于 已知向量a=(根号3cosx,cosx),b=(0,sinx),c=(sinx,cosx),d=(sinx,sinx)当x属于[0,已知向量a=(根号3cosx,cosx),b=(0,sinx),c=(sinx,cosx),d=(sinx,sinx) (1)当x属于[0,派/2]时,求向量c乘向量d的最大值.(2)设函数f(x)=(向量a 设向量a=(cosx,sinx)b=(cosy,siny),其中0 已知向量a =(cosx,sinx)向量b=(cos2x-1,sin2x)向量c=(cos2x,sin2x-根号3)其中x≠kπ,k∈Z(1)求证:向量a⊥向量b(2)设f(x)=向量a*向量c,且x∈(0,π),求f(x)的值域