设a,b属于R,且a>0,函数f(x)=x²+ax+2b,g(x)=ax+b,在[-1,1]上g(x)的最大值为2,则f(2)等于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 18:22:01

设a,b属于R,且a>0,函数f(x)=x²+ax+2b,g(x)=ax+b,在[-1,1]上g(x)的最大值为2,则f(2)等于
设a,b属于R,且a>0,函数f(x)=x²+ax+2b,g(x)=ax+b,在[-1,1]上g(x)的最大值为2,则f(2)等于

设a,b属于R,且a>0,函数f(x)=x²+ax+2b,g(x)=ax+b,在[-1,1]上g(x)的最大值为2,则f(2)等于
第一题:设x1,x2∈[-1,1]且x1

设二次函数f(x)=ax^2+bx+c(a,b,c属于R,a不等于0)当x属于R时,f(x-4)=f(2-x)且f(x)>=x;当x属于(0,2),f(x)1)的值,使得存在t属于R,只要x属于[1,m],就有f(x+t) 【高一数学】设函数y=f(x)的定义域为R,当x>0时,f(x)>0,且对任意的a,b属于R,都有f(a+b)=f(a)+f(b),试判断f(x)在R上的单调性,并解关于x的不等式f(2x) 设a,b属于R,且a>0,函数f(x)=x²+ax+2b,g(x)=ax+b,在[-1,1]上g(x)的最大值为2,则f(2)等于 设二次函数f(x)=ax^2+bx+c (a,b,c属于R),满足下列条件:设二次函数f(x)=ax^2+bx+c (a,b,c属于R),满足下列条件:1.x属于R时,f(x)的最小值是0,且f(x-1)=f(-x-1)成立;2.当x属于(0,5)时,x 设二次函数f(x)=ax^2+bx+c (a,b,c属于R),满足下列条件:1.x属于R时,f(x)的最小值是0,且f(x-1)=f(-x 设函数f(x)=-x/(1-|x|)(x属于R),区间M=(a,b)(a<b),集合N={y|y=f(x),x属于M},则集合M=N成立的答案是0对,解题过程中我看不懂的是 M=N的含义是f(a)=a,且f(b)=b是 设函数f(x)=-x/(1+|x|)(x属于R) 设函数f(x)=-x/(1-|x|)(x属于R),区间M=(a,b)(a<b),集合N={y|y=f(x),x属于M},则集合M=N成立的答案是0对,解题过程中我看不懂的是 M=N的含义是f(a)=a,且f(b)=b是 设函数f(x)=-x/(1+|x|)(x属于R) 设f(x)的定义域在实数集R上的函数,满足f(0)=1,且对任意实数ab都有f(a-b)=f(a)-b(2a-b+1),求f(x)2 ) 函数f(x)(x属于(-1,1))满足2f(x)-f(-x)=lg(x+1),求f(x) 设a,b属于R,且a>0,函数f(x)=x^2+ax+2b,g(x)=ax+b,在【-1,1】上g(x)的最大值是2 ,则f(2)=? 函数y=f(x),对任意a,b属于R,都有f(a)+f(b),且当X>0时,f(x) 设函数f(x)=√(a^2-x^2)/|x+a|+a.a属于R且a不等于0.(1)判断当a=1及a=-2时函数的奇偶性.设函数f(x)=√(a^2-x^2)/|x+a|+a.a属于R且a不等于0.(1)判断当a=1及a=-2时函数的奇偶性.(2)在a属于R且a不等于0条件 高一函数恒成立设二次函数f(x)=ax^2+bx+c(a,b,c属于R),满足下列条件:(1)x属于R时,f(x)的最小值为0,且f(x-1)=f(-x-1)成立;(2)当x属于(0,5)时,x有f(x+t) 已知函数f(x)定义域R,且任意a,b属于R,都有f(a+b)=f(a)+f(b).且当x>0时,f(x) 设二次函数f(x)=ax^2+bx+c (a,b,c属于R),满足下列条件:1.x属于R时,f(x)的最小值是0...设二次函数f(x)=ax^2+bx+c (a,b,c属于R),满足下列条件:1.x属于R时,f(x)的最小值是0,且f(x-1)=f(-x-1)成立;2.当x属于(0,5) 设二次函数f(x)=ax^2+bx+c (a,b,c属于R),满足下列条件:1.x属于R时,f(x)的最小值是0...设二次函数f(x)=ax^2+bx+c (a,b,c属于R),满足下列条件:1.x属于R时,f(x)的最小值是0,且f(x-1)=f(-x-1)成立;2.当x属于(0,5) 设函数f(x)=ax2+bx+1(a,b属于R).若f(-1)=0且对任意实数f(x)>=0恒成立,求f(x)的表达式 定义域在R上的函数y=f(x),有f(x)≠0,当x>0时,f(x)>1,且对任意的a,b属于R,都有f(a+b)=f(a)+f(b) (1)证明f(0)=1 (2)证明对于任意x属于R,恒有f(x)大于0 设二次函数f(X)=ax^2+bx+c(a,b,c属于R,a不等于0)满足条件当x属于R时,f(x-4)=f(2-x)且f(x)>=x;当x属于(0,2),f(x)1)的值,使得存在t属于R,只要x属于[1,m],就有f(x+t)