x+y+z=e∧(x+y+z),求σz/σx及σz/σy,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:22:39

x+y+z=e∧(x+y+z),求σz/σx及σz/σy,
x+y+z=e∧(x+y+z),求σz/σx及σz/σy,

x+y+z=e∧(x+y+z),求σz/σx及σz/σy,
令 t=x+y+z ,
则 t=e^t ,
t*e^(-t)=1 ,
(-t)*e^(-t)= -1 ,
因此 -t=w(-1) (其中 w(x) 是朗伯函数)
即 -x-y-z=w(-1) ,
所以 z=-x-y-w(-1) .
最后的等式显示,z 是 x、y 的一次函数,
因此 σz/σx=z '(x)= -1 ,σz/σy=z '(y)= -1 .