过点S引3条直线,SA,SB,SC,角BSC=90°,角ASC=角ASB=60°SA=SB=SC=a 求平面ABC垂直平面BSC作BC中点D连接AD SD 正三角形ASC ASB 所以AC=AB=a 又BC=根号2aABC是等腰直角三角形AD垂直BCSBC是等腰直角三角形SD垂直BC所以

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:54:24

过点S引3条直线,SA,SB,SC,角BSC=90°,角ASC=角ASB=60°SA=SB=SC=a 求平面ABC垂直平面BSC作BC中点D连接AD SD 正三角形ASC ASB 所以AC=AB=a 又BC=根号2aABC是等腰直角三角形AD垂直BCSBC是等腰直角三角形SD垂直BC所以
过点S引3条直线,SA,SB,SC,角BSC=90°,角ASC=角ASB=60°SA=SB=SC=a 求平面ABC垂直平面BSC
作BC中点D连接AD SD
正三角形ASC ASB 所以AC=AB=a
又BC=根号2a
ABC是等腰直角三角形
AD垂直BC
SBC是等腰直角三角形
SD垂直BC
所以SDA是平面ABC和平面BSC所成的二面角
SD=AD=二分之根号二a
AS=a
SD^2+AD^2=AS^2
SDA=90
平面ABC垂直平面BSC
三角形ABC是等腰直角三角形是如何得到
这是图 :http://hi.baidu.com/%B3%C2%C4%B3%C4%B3%B2%BB%C8%E7%B2%BB%BC%FB/album/%CD%BC

过点S引3条直线,SA,SB,SC,角BSC=90°,角ASC=角ASB=60°SA=SB=SC=a 求平面ABC垂直平面BSC作BC中点D连接AD SD 正三角形ASC ASB 所以AC=AB=a 又BC=根号2aABC是等腰直角三角形AD垂直BCSBC是等腰直角三角形SD垂直BC所以
这么理解吧
角ASC=角ASB=60°SA=SB=SC=a 所以,三角形ASC与ASB都是正三角形,所以AB=AC=a
角BSC=90°,SB=SC=a ,计算得BC
再在三角形中,利用勾股定理证明得角CAB为直角,且AB=AC
整个过程以计算为主.

过点S引3条直线SA,SB,SC,角BSC=90°,角ASC=角ASB=60°SA=SB=SC=a 求平面ABC垂直平面BSC过点S引3条直线,SA,SB,SC,角BSC=90°,角ASC=角ASB=60°SA=SB=SC=a 求平面ABC垂直平面BSC 过点S引3条直线,SA,SB,SC,角BSC=90°,角ASC=角ASB=60°SA=SB=SC=a 求平面ABC垂直平面BSC作BC中点D连接AD SD 正三角形ASC ASB 所以AC=AB=a 又BC=根号2aABC是等腰直角三角形AD垂直BCSBC是等腰直角三角形SD垂直BC所以 空间几何数学题过S点引3条不共面的直线SA,SB,SC,如图,∠BSC=90度,∠ASC=∠ASB=60度,若截取SA=SB=SC=a.1.求证:平面ABC⊥平面BSC2.求S到平面ABC的距离 过S点引3条长度相等但不共面的线段SA SB SC 且∠ASB=∠ASC=60° ∠BSC=90° 求证 平面ABC⊥平面BSC 求一道几何题的图过点S引三条直线SA,SB,SC,其中∠BSC=90°,∠ASC=60°,且SA=SB=SC=a,求证:平面ABC⊥平面BSC以上 求助一道二面角的题目.SA,SB,SC是从点S出发的三条射线,若∠ASB=∠ASC=π/4,∠BSC=π/3,则二面角B-SA-C的大小为? 正三棱锥S-ABC的侧棱长为a,底面边长为√2a(根号2 a),在侧棱SA,SB,SC上分别取A',B',C'三点,使SA'=1/2SA,SB'=1/3SB,SC'=1/4SC,过A',B',C'三点做截面将棱锥分成上、下两部分,求这两部分的体积比. 已知:点S是正三角形ABC所在平面外一点,且SA=SB=SC=AB,如果E、F分别为SC、AB的中点,求:异面直线EF与SA所成的角. 在四棱锥S-ABCD中 底面ABCD是正方形 SA⊥底面ABCD SA=SB 点M是SC的中点 AN⊥SC 且交SC于点N 求B-AC-M的余过点M做MO‖SA的O和谁相交第二问是指证明两个平面互相垂直 SA⊥平面ABC,AB⊥BC,SA=AB=BC,(1)求证:SB⊥BC,(2)求二面角C-SA-B的大小(3)求异面直线SC与AB所成角的余弦值拜托大家! 在四棱锥S-ABCD中 底面ABCD是正方形 SA⊥底面ABCD SA=SB 点M是SC的中点 AN⊥SC 且交SC于点N 求B-AC-M的在四棱锥S-ABCD中 底面ABCD是正方形 SA⊥底面ABCD SA=SB 点M是SC的中点 AN⊥SC 且交SC于点N 求①B-AC-M的余 SA,SB,SC, SA垂直于正方形ABCD所在平面,过A作与SC垂直的平面分别交SB,SC,SD于E,K,H,求证E,H分别是点A在直线SB和SD上的射影. 四面体S-ABC中SA,SB,SC两两垂直,SA=a,SB=b,SC=c,则四面体的外接圆的半径为 四面体S-ABC中SA,SB,SC两两垂直,SA=a,SB=b,SC=c,则四面体的外接圆的半径为 S是边长为a的正三角形连ABC所在平面外一点,SA=SB=SC=a,E,F是AB和SC的中点,则异面直线SA与EF所成的角为 s是边长为a的正三角形ABC所在平面外一点,SA=SB=SC=a,E,F分别是SC,AB的中点,求异面直线SA与EF所成的角.最好带图! S是正三角形ABC所在平面外一点,且SA=SB=SC=AB,如果EF分别为SC AB 中点,求异面直线EF与SA所成的角.最好给我个图,.