如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,G为△SAB中边AB上一点,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:07:21

如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,G为△SAB中边AB上一点,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.
如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,G为△SAB中边AB上一点,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.

如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,G为△SAB中边AB上一点,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.
解析:

 

证明如下:
方法一  连接CG交DE于点H,
如图所示.
∵DE是△ABC的中位线,
∴DE∥AB.
在△ACG中,D是AC的中点,
且DH∥AG.
∴H为CG的中点.
∴FH是△SCG的中位线,
∴FH∥SG.
又SG平面DEF,FH平面DEF,
∴SG∥平面DEF.
方法二  ∵EF为△SBC的中位线,∴EF∥SB.
∵EF平面SAB,SB平面SAB,
∴EF∥平面SAB.
同理可证,DF∥平面SAB,EF∩DF=F,
∴平面SAB∥平面DEF,又SG平面SAB,
∴SG∥平面DEF.

 
泪笑为您解答,
如若满意,请点击[采纳为满意回答];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!

已知:点S是正三角形ABC所在平面外一点,D,E,F分别是SA,SB,SC的中点.求证:平面DEF//平面ABC要完整详细过程~忘记说了,原题是没有图的。 如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,G为△SAB中边AB上一点,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明. 二面角某道题.如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点.求证SG//面DEF若AB=2根号3 ,SA=根号5 ,求二面角F-DE-C的度数图 已知:点S是正三角形ABC所在平面外一点,且SA=SB=SC=AB,如果E、F分别为SC、AB的中点,求:异面直线EF与SA所成的角. 已知P是正三角形ABC所在平面内一点 要使ABP BCP和ACP都为等腰三角形 这样的点P的个数是 如图所示P是△ABC所在平面外一点平面α‖平面ABC,α分别交线段PA,PB,PC于A`,B`,C`.若PA`/A`A=2/3,求如图所示P是△abc所在平面外一点平面α‖平面ABC,α分别交线段PA,PB,PC于A`,B`,C`.若PA`/A`A=2/3,求S△A`B`C`/S 在如图所示的几何体中,三角形ABC是边长为2的正三角形,AE>1,AE垂直平面ABC S是边长为a的正三角形连ABC所在平面外一点,SA=SB=SC=a,E,F是AB和SC的中点,则异面直线SA与EF所成的角为 如图,S是边长为a的正三角形ABC所在平面外一点,SA=SB=SC=a,E,F是AB和SC的中点,则异面直线SA与EF所成的 如图,已知S是正三角形ABC所在平面外一点,且SA=SB=AC,GC为三角形SAB边AB上的高,D,E,F,分别是AC,SC.SC.的中点,证明 SG平行DEF 图略 求证明! s是边长为a的正三角形ABC所在平面外一点,SA=SB=SC=a,E,F分别是SC,AB的中点,求异面直线SA与EF所成的角.最好带图! S是正三角形ABC所在平面外一点,且SA=SB=SC=AB,如果EF分别为SC AB 中点,求异面直线EF与SA所成的角.最好给我个图,. S是边长为a的正三角形ABC所在平面外一点,SA=SB=SC=a,E、F分别是SC和AB的中点,求异面直线SA和EF所成的角 S是边长为a的正三角形ABC所在平面外一点,SA=SB=SC=a,E,F分别是SC和AB的中点求异面直线SA,EF所称的角 若P是正三角形ABC所在平面外一点,PA=PB=PC=2/3,正三角形ABC的边长为1,则PC与平面ABC所成角 如图所示,P是△ABC所在平面外一点,且PA⊥平面ABC,平面PAC⊥平面PBC.求证:BC⊥AC 已知P是边长为a的正三角形ABC所在平面外一点,PA=PB=PC=a,E,F分别是PC和AB中点,求异面直线PA与EF所成的角 两个全等的正三角形ABC和A1B1C1所在平面平行,AA1//BB1//CC1,D是A1C1的中点,连接DB1,AB1,DA,求证:BC1//平面ADB1