设函数f(x)在(﹣∞,﹢∞)内连续,且f[f(x)]=x,证明在(﹣∞,﹢∞)内至少有一个x0满足f(x0)=x0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:08:46
设函数f(x)在(﹣∞,﹢∞)内连续,且f[f(x)]=x,证明在(﹣∞,﹢∞)内至少有一个x0满足f(x0)=x0
设函数f(x)在(﹣∞,﹢∞)内连续,且f[f(x)]=x,证明在(﹣∞,﹢∞)内至少有一个x0满足f(x0)=x0
设函数f(x)在(﹣∞,﹢∞)内连续,且f[f(x)]=x,证明在(﹣∞,﹢∞)内至少有一个x0满足f(x0)=x0
用反证法证明可知,即:假设在(﹣∞,﹢∞)内没有x0满足f(x0)=x0
∴f(x0)≠x0
∴f(f(x0))≠f(x0)≠x0
与已知f(f(x))=x矛盾,
∴假设不成立,即原命题(﹣∞,﹢∞)内至少有一个x0满足f(x0)=x0成立
这个定理叫作不动点定理。可以对等式两端同时求反函数,得f(x)=x(y),再求一次反函数就得到x=y(x),应此再令x=x0就行
设函数f(x)在(﹣∞,﹢∞)内连续,且f[f(x)]=x,证明在(﹣∞,﹢∞)内至少有一个x0满足f(x0)=x0
设函数f(x)在(﹣∞,﹢∞)内连续,且f[f(x)]=x,证明在(﹣∞,﹢∞)内至少有一个x0满足f(x0)=x0
关于间断点的选择题 设函数 f(x) 和 φ(x) 都在(-∞,+∞) 内有定义 f(x)连续 且f(x)≠0 φ(x)有断点设函数 f(x) 和 φ(x) 都在(-∞,+∞) 内有定义 f(x)连续 且f(x)≠0 φ(x)有断点 那么A. φ(f(x)) 必有间断点B.
设函数f(x)在(a,b)内连续,且f(a+),f(b-)存在,证明:函数f(x)在(a,b)内有界.
设F(x)=(f(x)-f(a))/(x-a),(x>a)其中f(x)在[a,+∞)上连续,f''(x)在(a,+∞)内存在且大于0,求证F(x)在(a,+∞)内单调递增.
设函数f(x)在区间I内连续,证明f^2 (x)也在I内连续
一道高数题,设函数f(x)在[0,+∞)上连续,且f(x)=x(e^-x)+(e^x)∫(0,1) f(x)dx,则f(x)=?设函数f(x)在[0,+∞)上连续,且f(x)=x(e^-x)+(e^x) ∫(0,1) f(x)dx ,则f(x)=
设函数f(x)在[a,+∞)上连续 并在(a,+∞)内可导 且f'(x)>k(其中k>0) 若f(a)
设函数f(x)在[a,+∞)上连续 并在(a,+∞)内可导 且f'(x)>k(其中k>0) 若f(a)
全部题目是 设函数f在[0,+∞]上具有连续的导函数,且lim(x→+∞)f'(x)存在有限,0
设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)
设函数f(x)在[a,b]上连续,在(a,b)上可导且f'(x)
设函数f(x)在(0,﹢∞)内连续,证明∫f(2/x+x/2)·lnx/xdx=ln2·∫f(2/x+x/2)·1/xdx
设函数f(x)在(0,﹢∞)内连续,证明∫f(2/x+x/2)·lnx/xdx=ln2∫f(2/x+x/2)·1/xdx∫上限是4,下限是1
证明:若函数f(x) 在(-∞,+∞) 内连续,且limf(x) 存在,则f(x) 必在(-∞,+∞) 内有界.
设函数f(x)在(-∞和+∞)上连续,则d(f(x)dx)等于
设函数f(x),g(x)在区间[a,b]上连续,且f(a)
设f(x)在(-∞,+∞)内连续,F(x)=∫(x-2t)f(t)dt (这个积分区间是0到x),且f(x)是单调见函数,证明:F(x)是单调增函数