求解高数定积分的几道题

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:21:49

求解高数定积分的几道题
求解高数定积分的几道题

求解高数定积分的几道题
注意到
∫[0,1] f(x)dx是一个定值,设∫[0,1] f(x)dx=B
∫[0,2] f(x)dx是一个定值,设∫[0,2] f(x)dx=A
f(x)=x^2-Ax+2B
两边求定积分得
B=∫[0,1] f(x)dx
=∫[0,1] (x^2-Ax+2B)dx
=(x^3/3-Ax^2/2+2Bx)[0,1]
=1/3-A/2+2B
=B

1/3-A/2+B=0 (1)
A=∫[0,2] f(x)dx
=∫[0,2] (x^2-Ax+2B)dx
=(x^3/3-Ax^2/2+2Bx)[0,2]
=8/3-2A+4B
8/3-3A+4B=0 (2)
(1)(2)解得
A=4/3,B=1/3
f(x)=x^2-4/3x+2/3

3.设F(x)=3∫{2/3,1}f(x),有中值定理存在y使F(y)=3*(1-2/3)f(y)=f(y)=f(0),所以存在f‘(c)=0
2.令x²-t²=u,下面用积分求导定理就可以了