三角形ABC中,AD是三角形ABC的中线,AE为三角形ABD的中线,AB=DC,∠BAD=∠BDA,求证:AC=2AE我注册不久没分 急

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 07:39:43

三角形ABC中,AD是三角形ABC的中线,AE为三角形ABD的中线,AB=DC,∠BAD=∠BDA,求证:AC=2AE我注册不久没分 急
三角形ABC中,AD是三角形ABC的中线,AE为三角形ABD的中线,AB=DC,∠BAD=∠BDA,求证:AC=2AE
我注册不久没分 急

三角形ABC中,AD是三角形ABC的中线,AE为三角形ABD的中线,AB=DC,∠BAD=∠BDA,求证:AC=2AE我注册不久没分 急
1) 取AB中点F,联结DF ;DF平行于AC且D/F分别为各边中点,所以AC=2DF,要证AC=2AE,只需证AE=DF
2) 在三角形ADF和DAE中,AF=DE(中点平分),AD=DA,角DAFF=角EDA(等腰三角形)
所以三角形ADF和DAE全等
所以AE=DF
3) 所以AC=2AE

证明:延长AE到F,使EF=AE
在△ABE与△FDE中,
∵BE=DE (∵AE是△ABD边BD上的中线)
∠AEB=∠DEF (对顶角)
EF=AE
∴△ABE≌△FDE (边,角,边)
∴∠EDF=∠ABE,DF=AB
...

全部展开

证明:延长AE到F,使EF=AE
在△ABE与△FDE中,
∵BE=DE (∵AE是△ABD边BD上的中线)
∠AEB=∠DEF (对顶角)
EF=AE
∴△ABE≌△FDE (边,角,边)
∴∠EDF=∠ABE,DF=AB
在△ADF与△ACD中,
∵DF=AB=CD (∵AD是△ABC边BC上的中线,且BA=BD )
∠ADF=∠ADE+∠EDF
∠ADC= ∠B+ ∠BAD
∴∴ADC=∴ADF
AD=AD (公共边)
∴△ADF≌△ACD (边,角,边)
∴AC=AF=AE+EF=2AE (∵EF=AE)
故AC=2AE ,

收起