若abc∈R+,求证c/(a+b)+a/(b+c)+b/(c+a)≥3/2怎么证啊
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:33:44
若abc∈R+,求证c/(a+b)+a/(b+c)+b/(c+a)≥3/2怎么证啊
若abc∈R+,求证c/(a+b)+a/(b+c)+b/(c+a)≥3/2
怎么证啊
若abc∈R+,求证c/(a+b)+a/(b+c)+b/(c+a)≥3/2怎么证啊
证明:c/(a+b)+a/(b+c)+b/(c+a)
=[(a+b+c)/(a+b)]-1+[(a+b+c)/(b+c)]-1+[(a+b+c)/(c+a)]-1
= -3+[(a+b+c)/(a+b)]+[(a+b+c)/(b+c)]+[(a+b+c)/(c+a)]
= -3+(a+b+c)[1/(a+b)]+[1/(b+c)]+[1/(c+a)]
将(a+b+c)拆成(1/2)[(a+b)+(b+c)+(c+a)]得
= -3+(1/2)[(a+b)+(b+c)+(c+a)][1/(a+b)]+[1/(b+c)]+[1/(c+a)]
= -3+(1/2){1+[(a+b)/(b+c)]+[(a+b)/(c+a)]+1+[(b+c)/(a+b)]+[(b+c)/(c+a)]+1+[(c+a)/(a+b)] +[(c+a) /(b+c)]}
= (-3/2)+ (1/2){[(a+b)/(b+c)]+[(b+c)/(a+b)]+ [(a+b)/(c+a)]+[(c+a)/(a+b)]+ [(b+c)/(a+b)] +[(a+b)/(b+c)]}
每两组结合,运用均值不等式得
≥(-3/2)+ (1/2)[2+2+2]
=3/2
证明:不妨设a≤b≤c
则 c/(a+b)+a/(b+c)+b/(c+a)≥c/(c+c)+a/(c+c)+b/(c+c)
=(a+b+c)/2c≥3c/2c=3/2
由柯西不等式可知,[(a+b)+(b+c)+(c+a)]×[1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)².====>2(a+b+c)×[1/(a+b)+1/(b+c)+1/(c+a)]≥9.====>[(a+b+c)/(a+b)]+[(a+b+c)/(b+c)]+[(a+b+c)/(c+a)]≥9/2.====>{1+[c/(a+b)]}+{1+[a/(b+c)]}+{1+[b/(c+a)]}≥9/2.====>c/(a+b)+a/(b+c)+b/(c+a)≥3/2.等号仅当a=b=c时取得。