n→无穷大 sin^n(2nπ/3n+1)的极限怎么求解不要用导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 18:36:34
n→无穷大 sin^n(2nπ/3n+1)的极限怎么求解不要用导数
n→无穷大 sin^n(2nπ/3n+1)的极限怎么求解
不要用导数
n→无穷大 sin^n(2nπ/3n+1)的极限怎么求解不要用导数
n→∞,2nπ/(3n+1)→2π/3
∴0<sin(2nπ/(3n+1))→√3 /2<1
∴[sin(2nπ/(3n+1)]^n→0
n→无穷大 sin^n(2nπ/3n+1)的极限怎么求解不要用导数
紧急:求 lim n*sin(π(n^2+2)^0.5)*(-1)^n,n趋向无穷大;
lim[(n+3)/(n+1))]^(n-2) 【n无穷大】
令n趋近于无穷大,且n存在,求sin(π/n)+sin(2π/n)+sin(3π/n)+...+sin(π)=?.
高数求极限n趋于无穷大时,lim (1/n - sin(1/n))/ (1/n^2),lim (1/n - sin(1/n))/ (1/n^3)这一式子呢求极限n趋于无穷大时,lim (1/n - sin(1/n))/ (1/n^2),lim (1/n - sin(1/n))/ (1/n^3)这一式子呢?
lim(n→∞) (1/n)[sin(π/n)+sin(2π/n)+…+sin(nπ/n)]=?
lim n->无穷大(2^n-1)/(3^n+1)
lim(n趋于无穷大),n^3*sin(1/n^3)lim(n趋于无穷大),n的3次方乘以sin的n的3次方分之一
求Lim (2sin^n x+3cos^n x)∕(sin^n x+cos^n x) ,0≤x≤π/2n趋于无穷大
[1sin(1/n)]/[n²+n+1]+[2sin(2/n)]/[n²+n+2]+……+[nsin(n/n)]/[n²+n+n]求n趋于无穷大时极限?
lim n趋向无穷大3n^3+n^2-3/4n^3+2n+1
lim n趋于无穷大(1/n^2+3/n^2+.+2n-1/n^2
求(1^n+2^n+3^n)^1/n,n趋于无穷大的极限
lim1/n(sin1/n+……+sin(n-1)/n)=?n趋向无穷大
当n趋向于无穷大时,n{sin(1/n)-sin[1/(n+1)]}趋向
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n n)) 当N越于无穷大的极限(1/(n^2+n+1 ) +2/(n^2+n+2) +3/(n^2+n+3) ……n/(n^2+n+n)) 当N越于无穷大的极限
讨论级数sin(nπ/4)/n^2 n从1趋向于无穷大的绝对收敛性与条件收敛性
求极限lim(n→无穷大)sin[根号下(n^2+1)]*π (π在根号外面)