lim(n->∞){1/2*4+1/3*5+...+1/(n+1)(n+3)=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:36:03
lim(n->∞){1/2*4+1/3*5+...+1/(n+1)(n+3)=?
lim(n->∞){1/2*4+1/3*5+...+1/(n+1)(n+3)=?
lim(n->∞){1/2*4+1/3*5+...+1/(n+1)(n+3)=?
1/2*4=1/2(1/2-1/4)
1/3*5=1/2(1/3-1/5)
1/4*6=1/2(1/4-1/6)
1/(n+1)(n+3)=1/2[1/(n+1)-1/(n+3)]
lim(n->∞){1/2*4+1/3*5+...+1/(n+1)(n+3)=
lim(n->∞)1/2{1/2-1/4+1/3-1/5+1/4-1/6+ +1/(n+1)-1/(n+3)]
=lim(n->∞)1/2[1/2+1/3-1/(n+2)-1/(n+3)]=5/12
1/(n+1)(n+3)=【1/(1+n)-1/(3+n)】/2
lim(n->∞){1/2*4+1/3*5+...+1/(n+1)(n+3)=lim(n->∞)【(1/2+1/3)-(1/(2+n)+1/(3+n))】/2=5/12
lim(n+3)(4-n)/(n-1)(3-2n)
lim(n^3+n)/(n^4-3n^2+1)
一道极限题,lim[n^2(2n+1)]/(n^3+n+4)n->∞
用数列极限证明lim(n→∞)(n^-2)/(n^+n+1)=1中证明如下:lim(n→∞)3n+1/5n-4
求lim n→∞ (1+2/n)^n+3
lim(n→∞)[1-(2n/n+3)]
lim(n→∞)(2n-1/n+3)
lim[(4+7+...+3n+1)/(n^2-n)]=
lim(1/n+2/n+3/n+4/n+5/n+……+n/n)=lim(1/n)+lim(2/n)+……+lim(n/n)成立吗?(n趋近于无穷大)为什么不成立?
lim(n->∞)[2^(2n-1)+1]/(4^n-3^n)=?
求当n→∞,Lim(1+2+3+4+……+(n-1)+n)/n
lim (n!+(n-1)!+(n-2)!+(N-3)!+⋯..+2!+1)/n!其中n→∞
求极限,lim(x->0) (1-2sinx)^(3/x)lim(n->+∞) (n!-4^n) / (6+ln(n)+n^2)
计算下列极限:1)lim(n→∞) 1/n3 2)lim(n→∞)4n+1/3n-11)lim(n→∞) 1/n3 2)lim(n→∞)4n+1/3n-13) lim(n→∞) (1/3)n4)lim(n→∞)n3+2n-5/5n3-n 5) lim(n→∞)(1+1/2n)n 6) lim(n→∞)2x3-x2+1/3x2+2x-9 7) lim(x→0 )sin3x/sin7x8)
lim(n->∞){1/2*4+1/3*5+...+1/(n+1)(n+3)=?
lim(n→∞) 2n^2+1/3n^2-4
lim(x→∞)1+2+3+…+n/(n+2)(n+4)=?
lim[(n+3)/(n+1))]^(n-2) 【n无穷大】