a=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^61+1),则a-1996的应该是:a=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1),则a-1996的末位数字....

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 10:51:57

a=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^61+1),则a-1996的应该是:a=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1),则a-1996的末位数字....
a=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^61+1),则a-1996的
应该是:a=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1),则a-1996的末位数字....

a=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^61+1),则a-1996的应该是:a=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1),则a-1996的末位数字....
给a乘以一个1,a不变,而1=2-1,故可以连续使用平方差公式.
a=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)
=(2^8-1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)

=2^128-1
而2^1=2,2^2=4,2^3=8,2^4=16,2^5=32,2^6=64,2^7=128,2^8=256……
可知2^n的个位每隔四项重复出现,依次是2、4、8、6,周期为四.
128÷4=32,能够被整除,是第32个周期的结束.
所以2^128的个位是6
所以a=2^128-1的个位是5
所以a-1996的个位是9