设函数f(x)在[0,1]上连续且非负,证:存在ζ∈(0,1)使ζf(ζ)=∫(1,ζ)f(x)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:18:40

设函数f(x)在[0,1]上连续且非负,证:存在ζ∈(0,1)使ζf(ζ)=∫(1,ζ)f(x)dx
设函数f(x)在[0,1]上连续且非负,证:存在ζ∈(0,1)使ζf(ζ)=∫(1,ζ)f(x)dx

设函数f(x)在[0,1]上连续且非负,证:存在ζ∈(0,1)使ζf(ζ)=∫(1,ζ)f(x)dx
证明:令F(x)=x*积分(从x到1)f(t)dt,0

令ζ=0和ζ=1,就可以证明了
F(ζ)=ζf(ζ)-∫(1,ζ)f(x)dx