设A为n阶矩阵,I是n阶单位阵,且存在正整数k≥2,使A∧k=O,而A∧(k-1)≠O证明I-A可逆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:24:55

设A为n阶矩阵,I是n阶单位阵,且存在正整数k≥2,使A∧k=O,而A∧(k-1)≠O证明I-A可逆
设A为n阶矩阵,I是n阶单位阵,且存在正整数k≥2,使A∧k=O,而A∧(k-1)≠O证明I-A可逆

设A为n阶矩阵,I是n阶单位阵,且存在正整数k≥2,使A∧k=O,而A∧(k-1)≠O证明I-A可逆
I-A^k=(I-A)(I+A+...+A^(k-1)=I
所以I-A可逆.其逆阵为(I+A+...+A^(k-1)

设A为n阶矩阵,I是n阶单位阵,且存在正整数k≥2,使A∧k=O,而A∧(k-1)≠O证明I-A可逆 设A为n阶正定矩阵,I是n阶单位阵,证明 A+I的行列式大于1 线性代数 设A,B,C均为n阶矩阵,I为n阶单位矩阵,且ABC=I,则下列矩阵乘积一定等于I的是哪个?1.ABC2.BAC3.CAB4.CBA1.ACB2.BAC3.CAB4.CBA 设A,B为n阶矩阵,I为n阶单位矩阵,且A=(1/2)(B+I),证明A^2=A的充分必要条件是B^=I 设A,B都是N阶方阵,I为N阶单位矩阵,且B=B^2,A=I+B,证明A可逆 2、设A为m×n矩阵,B为n×m矩阵,且m<n,已知AB=I,其中I为m阶单位矩阵,证明B的列向量组线性无 设A为n 阶矩阵,E 为 n阶单位矩阵,则 设A是n阶矩阵,满足AA^T=E(E是n阶单位矩阵),A^T是A的转置矩阵,且|A| 设A是n阶矩阵,满足AA^T=E(E是n阶单位矩阵),A^T是A的转置矩阵,且|A| 试证明:设A为n阶实对称矩阵,且A^2=A,则存在正交矩阵T,使得T^-1AT=diag(Er,0),其中r为秩,Er为r阶单位矩阵 设A,B都是N阶方阵,I为N阶单位矩阵,且B=B2,A=I+B,证明A可逆B2的2在B的右上方是小2, 设I为n阶单位矩阵,A为n阶实对称矩阵满足A^3+A^2+A=3I,则A=? A为n阶方阵,I为n阶单位矩阵,若A^2=A且A不等于I.证明A必为奇异矩阵 线性代数:设a为n×1阶矩阵,I为单位矩阵,A=I+aa^T,证明A为对陈矩阵. 设A是n阶是矩阵,且存在自然数k使(A^TA)^k=0,证A=0A是n阶实矩阵 设A是n阶实对称矩阵且满足A^2=A,设A的秩为r,求行列式det(2E-A),其中E是n阶单位矩阵 设A是n阶实对称矩阵且满足A^2=A,设A的秩为r,求行列式det(2E-A),其中E是n阶单位矩阵 设A、B均为n阶矩阵,(I-B)可逆,则矩阵A+BX=X的解X=I为单位矩阵.