双曲线x^2/m-1 - y^2/m+1 的离心率为3/2 ,M值为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:22:15
双曲线x^2/m-1 - y^2/m+1 的离心率为3/2 ,M值为
双曲线x^2/m-1 - y^2/m+1 的离心率为3/2 ,M值为
双曲线x^2/m-1 - y^2/m+1 的离心率为3/2 ,M值为
若双曲线x^2/(m-1) - y^2/(m+1)=1的焦点在x轴上,则:a^2=m-1>0,b^2=m+1>0,
此时:c^2=a^2+b^2=2m,由离心率为3/2得:2m/(m-1)=9/4,解得:m=9;
若双曲线x^2/(m-1) - y^2/(m+1)=1的焦点在y轴上,则:a^2=-m-1>0,b^2=1-m>0,
此时:c^2=a^2+b^2=-2m,由离心率为3/2得:-2m/(-m-1)=9/4,解得:m=-9;
综上得:m=-9或m=9
方程缺少右边部分
是x^2/m-1 - y^2/m+1 =1
则m-1和m+1同号
即m>1或m<-1
(1)m>1,
则a²=m-1,b²=m+1
∴ c²=a²+b²=2m
∴ c²/a²=(2m)/(m-1)=3/2
∴ 4m=3m-3
∴ ...
全部展开
方程缺少右边部分
是x^2/m-1 - y^2/m+1 =1
则m-1和m+1同号
即m>1或m<-1
(1)m>1,
则a²=m-1,b²=m+1
∴ c²=a²+b²=2m
∴ c²/a²=(2m)/(m-1)=3/2
∴ 4m=3m-3
∴ m=-3
不满足 m>1
(2)m<-1
x^2/m-1 - y^2/m+1 =1
即 y^2/(-m-1)-x^2/(1-m)=1
则a²=-m-1,b²=1-m
∴ c²=a²+b²=-2m
∴ c²/a²=(-2m)/(-m-1)=2m/(m+1)=3/2
∴ 4m=3m+3
∴ m=3
不满足 m<-1
∴ 无解。
收起