设函数f(x)=lg(x+根号x的平方十1.求(1)确定函数f(x)的定义域;(2)判断函数f(x)的奇偶性...设函数f(x)=lg(x+根号x的平方十1.求(1)确定函数f(x)的定义域;(2)判断函
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 23:50:58
设函数f(x)=lg(x+根号x的平方十1.求(1)确定函数f(x)的定义域;(2)判断函数f(x)的奇偶性...设函数f(x)=lg(x+根号x的平方十1.求(1)确定函数f(x)的定义域;(2)判断函
设函数f(x)=lg(x+根号x的平方十1.求(1)确定函数f(x)的定义域;(2)判断函数f(x)的奇偶性...
设函数f(x)=lg(x+根号x的平方十1.求(1)确定函数f(x)的定义域;(2)判断函数f(x)的奇偶性;(3)证明函数f(x)在其定义域上是单调增函数.
设函数f(x)=lg(x+根号x的平方十1.求(1)确定函数f(x)的定义域;(2)判断函数f(x)的奇偶性...设函数f(x)=lg(x+根号x的平方十1.求(1)确定函数f(x)的定义域;(2)判断函
R,奇
f(x)=lg[x+√(x^2+1)]
1.函数f(x)=lg[x+√(x^2+1)]有意义
只需x+√(x^2+1)>0
因为x+√(x^2+1)=1/[ √(x^2+1)-x]
又x^2+1>x^2恒成立
故√(x^2+1)>x
从而√(x^2+1)-x>0
故x+√(x^2+1)=1/[ √(x^2+1)-x]...
全部展开
f(x)=lg[x+√(x^2+1)]
1.函数f(x)=lg[x+√(x^2+1)]有意义
只需x+√(x^2+1)>0
因为x+√(x^2+1)=1/[ √(x^2+1)-x]
又x^2+1>x^2恒成立
故√(x^2+1)>x
从而√(x^2+1)-x>0
故x+√(x^2+1)=1/[ √(x^2+1)-x]>0恒成立
故f(x)的定义域为R.
2.f(x)=lg[x+√(x^2+1)]
f(-x)=lg[-x+√((-x)^2+1)]=lg[-x+√(x^2+1)]
f(x)+f(-x)=lg{[x+√(x^2+1)][-x+√(x^2+1)]}=lg[(x^2+1)-x^2]=lg1=0
所以f(-x)=-f(x)
且f(x)的定义域是R
所以f(x)是奇函数
3.设x1
=[x1+√(x1^2+1)]-[x2+√(x2^2+1)]
=(x1-x2)+[√(x1^2+1)-√(x2^2+1)]
=(x1-x2)+[(x1^2+1)-(x2^2+1)]/[√(x1^2+1)+√(x2^2+1)]
=(x1-x2)+(x1-x2)(x1+x2)/[√(x1^2+1)+√(x2^2+1)]
=(x1-x2){[√(x1^2+1)+√(x2^2+1)]+(x1+x2)}/[√(x1^2+1)+√(x2^2+1)]
=(x1-x2){[√(x1^2+1)+x1]+[√(x2^2+1)+x2]}/[√(x1^2+1)+√(x2^2+1)]
因为√(x1^2+1)>√x1^2=|x1|≥-x1,所以√(x1^2+1)+x1>0
同理,√(x2^2+1)+x2>0
所以[√(x1^2+1)+x1]+[√(x2^2+1)+x2]>0
又x1-x2<0,√(x1^2+1)+√(x2^2+1)>0
所以g(x1)-g(x2)<0
g(x1)
所以复合函数f(x)=h[g(x)]也是增函数
即f(x)=lg[x+√(x^2+1)]为增函数.
收起
(1)x不等于0
(2)奇函数
(3)x1>x2>0 或x1
函数是lg(x+(根号x的平方+1))
还是lg(x+根号x的平方十1)
(1)x为R
(2)奇函数
(3)x1>x2>0 或x1