如图,已知直线AC//BD,当动点P落在如下的某部分时,连接PA、PB,构成∠PAC、∠PBD、∠APB,构成三个角.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:08:48

如图,已知直线AC//BD,当动点P落在如下的某部分时,连接PA、PB,构成∠PAC、∠PBD、∠APB,构成三个角.
如图,已知直线AC//BD,当动点P落在如下的某部分时,连接PA、PB,构成∠PAC、∠PBD、∠APB,构成三个角.

如图,已知直线AC//BD,当动点P落在如下的某部分时,连接PA、PB,构成∠PAC、∠PBD、∠APB,构成三个角.
图1:

如图,已知直线AC//BD,当动点P落在如下的某部分时,连接PA、PB,构成∠PAC、∠PBD、∠APB,构成三个角. 如图,直线AC平行BD,连接AB,BD及线段AB把平面分成1,2,3,4四个部分,规定:线上各点不属于任何部分,1)当动点P落在第①部分时,试判断∠APB与∠PAC+∠PBD的数量关系,并说明理由2)当动点P落在第②部分 如图,直线AC平行BD,连接AB,BD及线段AB把平面分成1,2,3,4四个部分,规定:线上各点不属于任何部分,(1)当动点P落在第①部分时,试判断∠APB与∠PAC+∠PBD的数量关系,并说明理由(2)当动点P落在第②部 如图,直线AC平行BD,连接AB,BD及线段AB把平面分成1,2,3,4四个部分,规定:线上各点不属于任何部分,1)当动点P落在第①部分时,试判断∠APB与∠PAC+∠PBD的数量关系,并说明理由2)当动点P落在第②部分 如图,直线ac平行于bd,连接ab,直线ac,直线ac,bd及线段ab把平面分成①②③④四个部分,线上各点不属于任何部分.当动点p落在某个部分时,连接pa,pb,构成角pac,角apb,角pbd三个角.(提示,有公共端点的 初中数学题(关于动点)如图2,直线AB‖BD,连接AC,BD及线段AB把平面分成①,②,③,④四个部分,规定:线上各点不属于任何部分,当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示 如图,直线AC∥BD,连结AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连结PA、PB,构成∠PAC、∠APB、∠PBD三个角. (提示:有 如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共 28.如图,直线AC∥BD,连结AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连结PA、PB,构成∠PAC、∠APB、∠PBD三个角.(题示:有 个位数学达人,帮忙解答一道几何题.如图,直线AC‖BD,连结AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定线上各点不属于任何部分.当动点P落在某个部分时,连结PA,PB,构成∠PAC、∠ 如图,射线AC∥BD.(1)如图甲,当点P落在两射线之间时,试说明:∠APB=∠PAC+∠如图,射线AC∥BD.如图,射线AC∥BD.(1)如图甲,当点P落在两射线之间时,试说明:∠APB=∠PAC+∠PBD;(2)如图乙,当点P 如图,直线AC‖BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于当点P落在第4部分时,全面探究角PAC,角APB,角PBD之间的关系,并写出动点P的具体位置和相应的 如图,直线AC‖BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于当点P落在第4部分时,全面探究角PAC,角APB,角PBD之间的关系,并写出动点P的具体位置和相应的 在正方形ABCD中,对角线AC、BD相交于点O,点P为射线AC上的动点,如图,PD垂直于PE交直线AB于点E,EF垂直于BD,垂足为点F1)当点P在线段AC上运动时,求证:AP=DF 如图1,已知AC//BD,点P是直线AC、BD间的一点,连结AB、AP、BP,过点P作直线MN//AC(1)MN与BD的位置关系是( );(2)试说明∠APB=∠PBD+∠PAC;(3)如图2,当点P在直线AC上方时,(2)中的三个角的数量关系 如图,已知P是线段AB上的动点(P不与A,B重合),分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;点C、D在线段AB上且AC=BD,当点P从点C运动到点D时,设点G到直线AB的距 如图,AC=1,BD=2,CD=4,P是直线CD上的动点,丨PA-PB丨的最大值 七年级数学下江苏版课时作业本期中自测卷25.如图,直线AC平行BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定线上各点不属于任何部分,当动点P在某个部分时,连接PA,PB,构成∠PAC,