高等数学二重积分求区域A的体积V,其中A由z=xy,x²+y²=a²,z=0围成.最好详细点.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:34:02
高等数学二重积分求区域A的体积V,其中A由z=xy,x²+y²=a²,z=0围成.最好详细点.
高等数学二重积分
求区域A的体积V,其中A由z=xy,x²+y²=a²,z=0围成.最好详细点.
高等数学二重积分求区域A的体积V,其中A由z=xy,x²+y²=a²,z=0围成.最好详细点.
体积V即以闭域D:x²+y²=a²为底,z=f(x,y)为曲顶的立体的体积
∴V=∫∫(D) z dxdy 其中D={(x,y)|x²+y²=a²}
转换到极坐标系
V=∫∫(D) z dxdy
=∫∫(D) xy dxdy
=∫∫(D) (rcosθ)(rsinθ)r drdθ
=4∫(0→π/2)(sinθcosθ)dθ∫(0→a)r³dr
=4[(sin²θ/2)|(0→π/2)]*[(r^4/4)|(0→a)]
=4*(1/2)*(a^4/4)
=a^4/2
axd.99
体积V即以闭域D:x²+y²=a²为底,z=xy马鞍面为曲顶的立体的体积,注意z=xy可能<0,故被积函数取绝对值!
∴V=∫∫(D) |z| dxdy 其中D={(x,y)|x²+y²=a²}
转换到极坐标系
V=∫∫(D) |z| dxdy
=∫∫(D)| xy| dxdy
=∫∫(D) |(r...
全部展开
体积V即以闭域D:x²+y²=a²为底,z=xy马鞍面为曲顶的立体的体积,注意z=xy可能<0,故被积函数取绝对值!
∴V=∫∫(D) |z| dxdy 其中D={(x,y)|x²+y²=a²}
转换到极坐标系
V=∫∫(D) |z| dxdy
=∫∫(D)| xy| dxdy
=∫∫(D) |(rcosθ)(rsinθ)|r drdθ(利用对称性)
=4∫(0→π/2)(sinθcosθ)dθ∫(0→a)r³dr
=4[(sin²θ/2)|(0→π/2)]*[(r^4/4)|(0→a)]
=4*(1/2)*(a^4/4)
=a^4/2
收起