数学题(探究题)2/1+ 6/1+ 12/1 +20/1 +30/1+ 42/1+ 56/1+ 72/1+ 90/1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:49:49
数学题(探究题)2/1+ 6/1+ 12/1 +20/1 +30/1+ 42/1+ 56/1+ 72/1+ 90/1
数学题(探究题)
2/1+ 6/1+ 12/1 +20/1 +30/1+ 42/1+ 56/1+ 72/1+ 90/1
数学题(探究题)2/1+ 6/1+ 12/1 +20/1 +30/1+ 42/1+ 56/1+ 72/1+ 90/1
是不是反了……
如果没反的话
2+6+12+20+30+42+56+72+90
这构成一个数列{an}
an=n^2+2n+1-n-1=n^2+n
求前9项和则S9=a1+a2+a3+……+a9=330
如果反了的话则是
1/2+1/6+1/12+1/20+1/42+1/56+1/72+1/90
还是数列
an=1/[(n+1)^2-n-1]=1/(n^2+n)
S9=a1+a2+a3+……+a9
=1/1+1 + 1/4+2 + 1/9+3 + …… +1/81+9
=1/1×2 + 1/2×3 + 1/3×4 + …… + 1/9×10
可以拆了
1/n(n+1)=1/n - 1/(n+1)
所以S9=(1/1 - 1/2)+(1/2 - 1/3)+(1/3 - 1/4)+……+(1/9 - 1/10)
=1-1/10 =0.9
通项:
an=1/[n*(n+1)=1/n-1/(n+1)
2/1+ 6/1+ 12/1 +20/1 +30/1+ 42/1+ 56/1+ 72/1+ 90/1
=1-1/2+1/2-1/3+1/3-...+1/9-1/10
=1-1/10
=9/10
1/2+1/6+1/12+1/20+1/30
=1/(1*2)+1/(2*3)+1/(3*4)+1/(4*5)+1/(5*6)
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)-(1/5-1/6
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6
=1-1/6
=5/6