若x,y,z大于等于0,求证:x3+y3+z3大于等于3xyz
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 21:37:02
若x,y,z大于等于0,求证:x3+y3+z3大于等于3xyz
若x,y,z大于等于0,求证:x3+y3+z3大于等于3xyz
若x,y,z大于等于0,求证:x3+y3+z3大于等于3xyz
因为 x^3+y^3+z^3-3xyz
=(x+y)^3-3x^y-3xy^2+z^3-3xyz (把 x^3+y^3 写成 (x+y)^3-3x^2y-3xy^2)
=[(x+y)^3+z^3]-(3x^2y+3xy^2+3xyz) (分组)
=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z) (立方和公式,提取公因式)
=(x+y+z)(x^2+2xy+y^2-zx-zy+z^2-3xy) (提取公因式)
=(x+y+z)(x^2+y^2+z^2-xy-yz-zx) (整理)
=1/2*(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2] (配方)
>=0 ,
所以 x^3+y^3+z^3>=3xyz .
x³+y³+z³-3xyz
=(x³+3x²y+3xy²+y³+z³)-(3xyz+3x²y+3xy²)
=[(x+y)³+z³]-3xy(x+y+z)
=(x+y+z)(x²+y²+2xy-xz-yz+z...
全部展开
x³+y³+z³-3xyz
=(x³+3x²y+3xy²+y³+z³)-(3xyz+3x²y+3xy²)
=[(x+y)³+z³]-3xy(x+y+z)
=(x+y+z)(x²+y²+2xy-xz-yz+z²)-3xy(x+y+z)
=(x+y+z)(x²+y²+z²+2xy-3xy-xz-yz)
=(x+y+z)(x²+y²+z²-xy-yz-xz)
显然x+y+z>0
x²+y²+z²-xy-yz-xz=[(x-y)²+(y-z)²+(z-x)²]/2>=0
所以x³+y³+z³>=3xyz
收起