已知An=4n-2,若Bn=4/[An*A(n+1)],求Bn前n项和Tn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 03:44:49
已知An=4n-2,若Bn=4/[An*A(n+1)],求Bn前n项和Tn
已知An=4n-2,若Bn=4/[An*A(n+1)],求Bn前n项和Tn
已知An=4n-2,若Bn=4/[An*A(n+1)],求Bn前n项和Tn
Bn=4/[An*A(n+1)] = 4/[(4n-2)(4n+2)] = [1/(4n - 2)] - [1/(4n + 2)] ,
Tn = 1/2 - 1/6 + 1/6 - 1/10······ - [1/(4n + 2)]
= 1/2 - [1/(4n + 2)] = n/(2n + 1)
等比数列通项公式已知{an},an属于N*,Sn=1/8(an+2)2(1)、求证:{an}是等比数列(2)、若b1=1,b2=4,{bn}前n项和为Bn,且Bn+1=(an+1-an + 1)Bn+(an-an=1)Bn-1(n大于等于2),求{bn}通项公式.
已知数列{an},{bn}中,an=2^(n-4),bn=(n-4)^2,当n为何值时an>bn
已知数列an中,a1=-1,an+an-1+4n+2=0,若bn=an+2n(n∈N*),求证,1:数列bn是的等差数列2:求an的通项公式
已知数列{an}的前n项和为Sn=4n^2-2n.n属于N+(1)求an (2)若bn满足an=2(log2)bn,求数列bn的前n项和
已知数列{an}中,a1=-1,an+a(n+1)+4n+2=0若bn=an+2n,求证{bn}为等比数列求{an}的通项公式an
等差数列{an} {bn}前n项和为An Bn,An/Bn=(7n+2)/(4n+27),求an/bn
等差数列{an} {bn}前n项和为An Bn,An/Bn=(7n+2)/(4n+27),求an/bn
(1)若两等差数列{an},{bn}的前n项和分别为An,Bn,满足An/Bn=(7n+1)/(4n+27),则a11/b11的值为( )(2)已知等比数列{an},首项为81,数列{bn}满足bn=log3(an),其前n项和为Sn.①证明{bn}为等差数列;
已知An=4n-2,若Bn=4/[An*A(n+1)],求Bn前n项和Tn
已知数列{an}的通向公式为an=2^n(n-1)/2.若bn=log2an/4^n,求数列{bn}的最小值
若两个等差数列{an}、{bn}的前n项和An、Bn,且满足An/Bn=(4n+2)/(5n-5),则a13/b13
已知数列an满足a1=4,an=4 - 4/an-1 (n>1),记bn= 1 / an-2 .(1)求证:数列bn是等差数列
若两个等差数列{an}和{bn}的前n项An和Bn,满足关系式An/Bn=2n+1/4n+27(n∈N*),求an/bn.
已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n属於N+)证明数列{an+1-an}是等比数列?若数列{bn}满足(4^b1-1)(4^b2-1)……(4^bn-1)=(an+1)^bn,证明数列{bn}是等差数列?
已知数列an,a1=1,an+2a(n+1)+6n+4=0,若bn=an+2n,(1)求证bn是等比数列(2)求数列an的通项公式
已知数列{an}中,a1=1,an+2an+1+6n+4=0,若bn=an+2л,(1)求证:{bn}是等比数列(2)求数列{an}的通项公式.
数学已知{an}中,Sn+an=2 1)求an 2)若{bn}中,b1=1,且b(n+1)=bn+an,求bn
已知在直角坐标系中,An(an,0),Bn(0,bn)(n∈N*),其中数列{an},{bn}都是递增数列……已知在直角坐标系中,An(an,0),Bn(0,bn)(n∈N*),其中数列{an},{bn}都是递增数列.(1)若an=2n+1,bn=3n+1,判断直线A1B1与A2B2是否