P(A)=P(B)=P(C)=1/4 ,P(BC)=0,P(AC)=P(AB)=1/16求事件ABC全不发生的概率
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 11:05:37
P(A)=P(B)=P(C)=1/4 ,P(BC)=0,P(AC)=P(AB)=1/16求事件ABC全不发生的概率
P(A)=P(B)=P(C)=1/4 ,P(BC)=0,P(AC)=P(AB)=1/16求事件ABC全不发生的概率
P(A)=P(B)=P(C)=1/4 ,P(BC)=0,P(AC)=P(AB)=1/16求事件ABC全不发生的概率
∵P(AC)=0
∴P(ABC)=0
P(A'B'C')
=P(AUBUC)'
=1-P(AUBUC)
=1-P(A)-P(B)-P(C)+P(AB)+P(BC)+P(AC)-P(ABC)
=1-1/4-1/4-1/4+1/16+1/16+0-0
=3/8
P(A)×P(B)=0.05,P(A)×P(C)=0.1,P(B)×P(C)=0.125.求P(A)/P(B)/P(C),
已知P(A)=0.4,P(B)=0.6,P(A)+P(B)=1,P(C)=0.7,P(D)=0.3 求P(A|C)=?
P(AB)=P(A)P(B)?
若A,B为互斥事件,则A P(A) +P(B)1C P(A) +P(B)=1D P(A) +P(B)
A、B、C是三个随机事件,且P(A)=P(B)=P(C)=1/4,P(AB)=P(AC=1/8),P(BC)=0,求P(A∨B∨C)
怎么证明概率问题P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)
证明公式:p(A+B+C)=P(A)+P(B)+P(C)+P(AB)-P(AC)+P(BC)+P(ABC)
p(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)具体的概率证明过程
概率性质中的疑惑对于任意事件A,B,C有:P(AUBUC) = P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC).
对任意的事件A,B,C,证明:P(AB)+P(AC)+P(BC)>=P(A)+P(B)+P(C)-1
设随机事件A与B互不相容,且有P(A)>0,P(B)>0,则()A、P(A)=1-P(B) B、P(AB)=P(A)P(B) C、P(A)=P(B) D、P(AB)=P(A)前面C、D改为 C、P(AUB)=1 D、P(AB的逆)=1
已知P(A)=P(B)=P(C)=1/4,P(AB)=P(AC)=P(BC)=1/8,P(ABC)=1/16,则A,B,C至多有一个发生的概率是多少?
已知p(a)=p(b)=p(c)=1/4,p(ab)=p(bc)=p(bc)=0,p(ac)=1/8.求a,b,c中至少发生一个的概率
证明不等式p(AB)>=p(A)+p(B)-1
证明S△=根号p(p-a)(p-b)(p-c),其中p=½(a+b+c)
设AB两个事件且P(B)>0,P(A|B)=1,则必有设AB两个事件且P(B)>0,P(A|B)=1,则必有A、P(A+B)>P(A)B、P(A+B)>P(B)C、P(A+B)=P(A)D、P(A+B)=P(B)
证明 p(a补交b补)=1+p(a交b)-p(a)-p(b)
A、B、C为随机事件,P(A)=P(B)=P(C)=1/4,P(AB)=0,P(AC)=P(BC)=1/16,求A、B、C全不发生概率